Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Jan-Feb;35(1):28-37.
doi: 10.4103/2319-4170.106169.

A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration

Affiliations
Free article
Comparative Study

A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration

Surena Vahabi et al. Chang Gung Med J. 2012 Jan-Feb.
Free article

Abstract

Background: Recently, tissue engineering has been introduced as a regenerative treatment for bone defects. There is some evidence showing bone regeneration from mesenchymal stem cells (MSC) loaded on hydroxyapatite β-tricalcium phosphate (HA/TCP) as a scaffold in large defects. This study aimed to compare the quality and quantity of regenerated bone using Bio-Oss, HA/TCP and MSC loaded HA/TCP scaffolds.

Methods: Mesenchymal stem cells were aspirated from iliac crest bone marrow after extracting the first, second and third premolars and the first molar in five mature hybrid dogs. The cells were cultured and their osteogenic differentiation potential was evaluated after the third cell passage using Alizarin red staining in experimental conditions. The HA/TCP scaffold (3 × 3 × 3 mm) was loaded with undifferentiated mesenchymal stem cells. Bilateral bone defects were then prepared in the jaws using trephine burs. The defects were randomly filled with HA/TCP, Bio-Oss, or HA/TCP + MSCs. One defect served as a control and was left as an empty cavity. All defects except the control defect were covered with an absorbable membrane. Histological and histomorphometric evaluations were conducted after 6 weeks and data were subjected to analysis of variance (ANOVA) (p < 0.05).

Results: The empty cavity demonstrated more bone formation (60.80%) than the HA/TCP (44.93%) and Bio-Oss (40.60%) (p < 0.05) groups. However, the difference from the HA/TCP + MSCs group was not significant (46.38%) (p > 0.05).

Conclusion: An MSC-loaded HA/TCP scaffold is a more effective alternative than Bio-OSS or HA/TCP in inducing bone regeneration.

PubMed Disclaimer

Publication types

LinkOut - more resources