Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 15;84(2):182-91.
doi: 10.1016/j.bcp.2012.03.015. Epub 2012 Mar 29.

5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils

Affiliations

5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils

Hsiang-Ruei Liao et al. Biochem Pharmacol. .

Abstract

Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-7-methoxyflavone (MCL-1), a lignan extracted from the leaves of Muntingia calabura L. (Tiliaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G release in human neutrophils. Signaling pathways regulated by MCL-1 to oppose fMLP-induced respiratory burst were evaluated by membrane localization of Tec induced by fMLP and by immunoblotting analysis of downstream phosphorylation targets of Tec. Briefly, MCL-1 specific inhibited fMLP-induced superoxide anion production in a concentration-dependent (IC(50)=0.16±0.01 μM) and Tec kinase-dependent manner, however, MCL-1 did not affect fMLP-induced cathepsin G release. Further, MCL-1 suppressed fMLP-induced Tec translocation from the cytosol to the inner leaflet of the plasma membrane, and subsequently activation of phospholipase Cγ2 (PLCγ2). Moreover, MCL-1 attenuated PLCγ2 activity and intracellular calcium concentration notably through extracellular calcium influx. Consequently, fMLP-induced phosphorylation of protein kinase C (PKC) and membrane localization of p47(phox) were decreased by MCL-1 in a Tec-dependent manner, while the phosphorylation of extracellular signal-regulated kinase (ERK), p38, AKT and Src tyrosine kinase family remained unaffected. In addition, MCL-1 neither inhibited NADPH oxidase activity nor increased cyclicAMP levels. MCL-1 specific opposes fMLP-mediated respiratory burst by inhibition of membrane localization of Tec and subsequently interfered with the activation of PLCγ2, protein kinase C, and p47(phox).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources