Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 1;84(1):88-92.
doi: 10.1016/j.bcp.2012.03.019. Epub 2012 Mar 30.

Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats

Affiliations

Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats

Claudio Bucolo et al. Biochem Pharmacol. .

Abstract

Diabetic retinopathy is a complex disease that has potential involvement of inflammatory and oxidative stress-related pathways in its pathogenesis. We hypothesized that eriodictyol, one of the most abundant dietary flavonoids, could be effective against diabetic retinopathy, which involves significant oxidative stress and inflammation. The aim of the present study was to investigate the effects of eriodictyol in early retinal and plasma changes of streptozotocin-induced diabetic rats. The effect of eriodictyol treatment (0.1, 1, 10 mg/kg daily for 10 days) was evaluated by TNF-α, ICAM-1, VEGF, and eNOS protein levels measurement in the retina, plasma lipid peroxidation, and blood-retinal barrier (BRB) integrity. Increased amounts of cytokines, adhesion molecule, and nitric oxide synthase were observed in retina from diabetic rats. Eriodictyol treatment significantly lowered retinal TNF-α, ICAM-1, VEGF, and eNOS in a dose-dependent manner. Further, treatment with eriodictyol significantly suppressed diabetes-related lipid peroxidation, as well as the BRB breakdown. These data demonstrated that eriodictyol attenuates the degree of retinal inflammation and plasma lipid peroxidation preserving the BRB in early diabetic rats.

PubMed Disclaimer

Publication types

MeSH terms