Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery
- PMID: 22489704
- PMCID: PMC3355976
- DOI: 10.1021/mp2005615
Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery
Abstract
When a nanoparticle is developed for systemic application, its surface is typically protected by poly(ethylene glycol) (PEG) to help prolonged circulation and evasion of immune clearance. On the other hand, PEG can interfere with interactions between nanocarriers and target cells and negatively influence the therapeutic outcomes. To overcome this challenge, we propose low molecular-weight chitosan (LMWC) as an alternative surface coating, which can protect the nanomedicine in neutral pH but allow cellular interactions in the weakly acidic pH of tumors. LMWCs with a molecular weight of 2-4 kDa, 4-6.5 kDa, and 11-22 kDa were produced by hydrogen peroxide digestion and covalently conjugated with poly(lactic-co-glycolic acid) (PLGA). Nanoparticles created with PLGA-LMWC conjugates showed pH-sensitive cell interactions, which enabled specific drug delivery to cells in a weakly acidic environment. The hydrophilic LMWC layer reduced opsonization and phagocytic uptake. These properties qualify LMWCs as a promising biomaterial for pH-sensitive stealth coating.
Figures










References
-
- Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, Marks JD, Benz CC, Park JW. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–6740. - PubMed
-
- Mamot C, Drummond DC, Noble CO, Kallab V, Guo ZX, Hong KL, Kirpotin DB, Park JW. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005;65:11631–11638. - PubMed
-
- Moreno D, Zalba S, Navarro I, Tros de Ilarduya C, Garrido MJ. Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur. J. Pharm. Biopharm. 2010;74:265–274. - PubMed
-
- Carrstensen H, Müller RH, Müller BW. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin Nutr. 1992;11:289–297. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources