Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;125(5):807-14.

Neuregulin-1 attenuates mitochondrial dysfunction in a rat model of heart failure

Affiliations
  • PMID: 22490579

Neuregulin-1 attenuates mitochondrial dysfunction in a rat model of heart failure

Yong-fang Guo et al. Chin Med J (Engl). 2012 Mar.

Abstract

Background: Mitochondrial dysfunction plays a pivotal role in the progression of left ventricular (LV) remodeling and heart failure (HF). Recombinant human neuregulin-1 (rhNRG-1) improves cardiac function in models of experimental HF and in clinical trials; however, its impact on mitochondrial function during chronic HF remains largely unknown. The purpose of this study was to investigate whether rhNRG-1 could attenuate the functional and structural changes that occur in cardiac mitochondria in a rat model of HF induced by myocardial infarction.

Methods: Sixty adult rats underwent sham or coronary ligation to induce HF. Four weeks after ligation, 29 animals with LV ejective fraction ≤ 50% were randomized to receive either vehicle or rhNRG-1 (10 µg×kg(-1)×d(-1), I.V.) for 10 days, another 12 sham-operated animals were given no treatment. Echocardiography was used to determine physiological changes. Mitochondrial membrane potential (MMP), respiratory function and tissue adenosine triphosphate (ATP) production were analyzed. Cytochrome c expression and cardiomyocyte apoptosis were determined. Oxidative stress was evaluated by reactive oxygen species production using fluorescence assays and gene expression of glutathione peroxidase measured by real-time quantitative PCR.

Results: Compared with sham-operated animals, vehicle treated HF rats exhibited severe LV remodeling and dysfunction, significant mitochondrial dysfunction, increased mitochondrial cytochrome c release, increased myocyte apoptosis and enhanced oxidative stress. Short-term treatment with rhNRG-1 significantly attenuated LV remodeling and cardiac function. Concomitant with this change, mitochondrial dysfunction was significantly attenuated; with ATP production, MMP and respiratory function restored, cytochrome c release and apoptosis inhibited, and oxidative stress reduced.

Conclusion: The present study demonstrated that rhNRG-1 can significantly improve LV remodeling and cardiac function in the failing heart, this beneficial effect is related to reducing mitochondrial dysfunction, myocyte apoptosis and oxidative stress.

PubMed Disclaimer

Publication types