Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr;130(4):433-9.
doi: 10.1001/archophthalmol.2011.1626.

Relationship of Fuchs endothelial corneal dystrophy severity to central corneal thickness

Collaborators, Affiliations

Relationship of Fuchs endothelial corneal dystrophy severity to central corneal thickness

Laura J Kopplin et al. Arch Ophthalmol. 2012 Apr.

Abstract

Objective: To define the relationship between Fuchs endothelial corneal dystrophy (FECD) severity and central corneal thickness (CCT).

Methods: We examined 1610 eyes from a subset of index cases, family members, and unrelated control subjects with normal corneas from the FECD Genetics Multi-Center Study. To estimate the association between FECD severity grade (7-point severity scale based on guttae confluence) and CCT measured by ultrasonographic pachymetry, a multivariable model was used that adjusted for eye, age, race, sex, history of glaucoma or ocular hypertension, diabetes mellitus, contact lens wear, intraocular pressure, and familial relationship to the index case. An interaction between FECD severity grade and edema (stromal or epithelial) on slitlamp examination findings was used to investigate whether the effect of FECD severity grade on CCT differed between those with and without edema.

Results: Average CCT was thicker in index cases for all FECD grades compared with unaffected controls (P ≤ .003) and in affected family members with an FECD grade of 4 or greater compared with unaffected family members (P ≤ .04). Similar results were observed for subjects without edema. Average CCT of index cases was greater than that of affected family members with grades 4, 5, and 6 FECD (P ≤ .02). Intraocular pressure was also associated with CCT (P = .01).

Conclusions: An increase in CCT occurs with increasing severity of FECD, including at lower FECD grades in which clinically observable edema is not present. Monitoring CCT changes serially could be a more sensitive measure of disease progression with surgical therapeutic implications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Boxplots of central corneal thickness for index cases (FECD grade=1–3, 4, 5, 6), affected family members (FECD grade=1–3, 4, 5, 6), unaffected family members and controls. Means are represented by ‘+’.

References

    1. Burns RR, Bourne WM, Brubaker RF. Endothelial function in patients with cornea guttata. Invest Ophthalmol Vis Sci. 1981;20(1):77–85. - PubMed
    1. Mandell RB, Polse KA, Brand RJ, Vastine D, Demartini D, Flom R. Corneal hydration control in Fuchs’ dystrophy. Invest Ophthalmol Vis Sci. 1989;30(5):845–852. - PubMed
    1. Lu Y, Dimasi DP, Hysi PG, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 2010;6(5):e1000947. - PMC - PubMed
    1. Vitart V, Bencic G, Hayward C, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet. 2010;19(21):4304–4311. - PubMed
    1. Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh) 1975;53(1):34–43. - PubMed

Publication types