Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Aug;27(8):3278-83.
doi: 10.1093/ndt/gfs060. Epub 2012 Apr 5.

Removal of water-soluble and protein-bound solutes with reversed mid-dilution versus post-dilution haemodiafiltration

Affiliations
Comparative Study

Removal of water-soluble and protein-bound solutes with reversed mid-dilution versus post-dilution haemodiafiltration

Sunny Eloot et al. Nephrol Dial Transplant. 2012 Aug.

Abstract

Background: Convective dialysis strategies are superior in the removal of protein-bound uraemic retention solutes. Mid-dilution and mixed-dilution haemodiafiltration (HDF), both combining pre-dilution and post-dilution, are promising options to further improve removal capacity and have been shown of additional benefit for large middle molecules. In this study, we compared the removal of small water-soluble and protein-bound solutes in post-dilution versus mid-dilution HDF.

Methods: Fourteen chronic haemodialysis (HD) patients were included in this crossover study. Patients were kept for 4 weeks on high-flux HD. On the mid-week session of Weeks 3 and 4, either post-dilution or reversed mid-dilution HDF were applied, in random order. Blood and dialysate flows were maintained at 300 and 800 mL/min, while the substitution flow was 75 mL/min in post-dilution and 150 mL/min in mid-dilution HDF. Based on the data collected during the sessions under study, extraction ratio (ER) and reduction ratio (RR) of small water-soluble and protein-bound solutes were calculated, as well as total solute removal (TSR) based on spent dialysate.

Results: No differences were observed for TSR, ER and RR for protein-bound solutes. For small water-soluble solutes, ER in post-dilution HDF was significantly higher than in mid-dilution HDF: 0.92 ± 0.02 versus 0.87 ± 0.04 for urea (P < 0.001), 0.92 ± 0.02 versus 0.88 ± 0.02 for creatinine (P < 0.001) and 0.84 ± 0.02 versus 0.82 ± 0.03 for uric acid (P = 0.009). TSR and RR were, however, not different due to the lower inlet concentrations with post-dilution HDF.

Conclusions: TSR of mid-dilution and post-dilution HDF was not different for both small water-soluble and protein-bound compounds. Both strategies in the setting as applied in this study are as adequate for the removal of these solutes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources