Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;23(3):292-301.
doi: 10.1097/FBP.0b013e3283536d43.

Coadministration of cannabinoid CB1-receptor and adenosine A1-receptor antagonists improves the acquisition of spatial memory in mice: participation of glutamatergic neurotransmission

Affiliations

Coadministration of cannabinoid CB1-receptor and adenosine A1-receptor antagonists improves the acquisition of spatial memory in mice: participation of glutamatergic neurotransmission

Fabrício Luiz Assini et al. Behav Pharmacol. 2012 Jun.

Abstract

The aim of this study was to characterize the interaction of adenosine A1-receptor and cannabinoid CB1-receptor antagonists in the water maze and object-location tasks, and to evaluate the participation of glutamatergic neurotransmission in the hippocampus in the learning enhancement induced by the coadministration of both antagonists. Our results show that coadministration of ineffective doses of DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (an A1-receptor antagonist) and AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) (a CB1-receptor antagonist) in different proportions enhanced the acquisition of spatial learning. N-methyl-D-aspartate receptor blockade disrupted the effects of the selected drug combination [AM251 0.25 mg/kg intraperitoneally (i.p.)+DPCPX 0.30 mg/kg i.p.] either in the water maze or in the object-location task. Moreover, this drug combination induced a significant ex-vivo enhancement in glutamate release into hippocampal slices. In addition, the blockade of N-methyl-D-aspartate receptors with MK-801 (0.25 µg/site) infused into the hippocampal CA1 area reversed the effects of coadministration, as evaluated in the object-location task. In conclusion, this is the first study to show that A1-receptor and CB1-receptor antagonists might interact on hippocampal neurons to enhance spatial memory in mice.

PubMed Disclaimer

MeSH terms

LinkOut - more resources