Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells
- PMID: 22496076
- PMCID: PMC3391473
- DOI: 10.1098/rsbl.2012.0150
Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells
Abstract
It has been hypothesized that radiation-induced oxidative stress is the mechanism for a wide range of negative impacts on biota living in radioactively contaminated areas around Chernobyl. The present study tests this hypothesis mechanistically, for the first time, by modelling the impacts of radiolysis products within the cell resulting from radiations (low linear energy transfer β and γ), and dose rates appropriate to current contamination types and densities in the Chernobyl exclusion zone and at Fukushima. At 417 µGy h(-1) (illustrative of the most contaminated areas at Chernobyl), generation of radiolysis products did not significantly impact cellular concentrations of reactive oxygen species, or cellular redox potential. This study does not support the hypothesis that direct oxidizing stress is a mechanism for damage to organisms exposed to chronic radiation at dose rates typical of contaminated environments.
Figures


Similar articles
-
Increased oxidative stress in barn swallows from the Chernobyl region.Comp Biochem Physiol A Mol Integr Physiol. 2010 Feb;155(2):205-10. doi: 10.1016/j.cbpa.2009.10.041. Epub 2009 Nov 5. Comp Biochem Physiol A Mol Integr Physiol. 2010. PMID: 19896553
-
Antioxidants in eggs of great tits Parus major from Chernobyl and hatching success.J Comp Physiol B. 2008 Aug;178(6):735-43. doi: 10.1007/s00360-008-0262-z. Epub 2008 Apr 8. J Comp Physiol B. 2008. PMID: 18392836
-
Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.Sci Rep. 2018 May 9;8(1):7438. doi: 10.1038/s41598-018-25495-5. Sci Rep. 2018. PMID: 29743616 Free PMC article.
-
Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster.J Environ Radioact. 2020 Oct;222:106375. doi: 10.1016/j.jenvrad.2020.106375. Epub 2020 Aug 10. J Environ Radioact. 2020. PMID: 32791372 Review.
-
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury.Cancer Lett. 2012 Dec 31;327(1-2):48-60. doi: 10.1016/j.canlet.2011.12.012. Epub 2011 Dec 17. Cancer Lett. 2012. PMID: 22182453 Free PMC article. Review.
Cited by
-
Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation.PLoS One. 2018 May 16;13(5):e0196472. doi: 10.1371/journal.pone.0196472. eCollection 2018. PLoS One. 2018. PMID: 29768440 Free PMC article.
-
Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by "Isotope-Editing".Microorganisms. 2023 Feb 25;11(3):584. doi: 10.3390/microorganisms11030584. Microorganisms. 2023. PMID: 36985158 Free PMC article.
-
Different responses of normal cells (red blood cells) and cancer cells (K562 and K562/Dox cells) to low-dose 137Cs gamma-rays.Mol Clin Oncol. 2021 Apr;14(4):74. doi: 10.3892/mco.2021.2236. Epub 2021 Feb 23. Mol Clin Oncol. 2021. PMID: 33680462 Free PMC article.
-
The Chemical Reactivity of Membrane Lipids.Chem Rev. 2024 Mar 27;124(6):3284-3330. doi: 10.1021/acs.chemrev.3c00608. Epub 2024 Mar 18. Chem Rev. 2024. PMID: 38498932 Free PMC article. Review.
-
Reducing the ionizing radiation background does not significantly affect the evolution of Escherichia coli populations over 500 generations.Sci Rep. 2019 Oct 17;9(1):14891. doi: 10.1038/s41598-019-51519-9. Sci Rep. 2019. PMID: 31624294 Free PMC article.
References
-
- Monaghan P., Metcalfe N. B., Torres R. 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12, 75–9210.1111/j.1461-0248.2008.01258.x (doi:10.1111/j.1461-0248.2008.01258.x) - DOI - DOI - PubMed
-
- Weiss J. F., Landauer M. R. 2003. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189, 1–2010.1016/S0300-483X(03)00149-5 (doi:10.1016/S0300-483X(03)00149-5) - DOI - DOI - PubMed
-
- Esnault M.-A., Legue F., Chenal C. 2010. Ionizing radiation: advances in plant response. Environ. Exp. Bot. 68, 231–23710.1016/j.envexpbot.2010.01.007 (doi:10.1016/j.envexpbot.2010.01.007) - DOI - DOI
-
- Møller A. P., Surai P., Mousseau T. A. 2005. Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl. Proc. R. Soc. B 272, 247–25310.1098/rspb.2004.2914 (doi:10.1098/rspb.2004.2914) - DOI - DOI - PMC - PubMed
-
- Zaka R., Vandecasteele C. M., Misset M. T. 2002. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae). J. Exp. Bot. 53, 1979–198710.1093/jxb/erf041 (doi:10.1093/jxb/erf041) - DOI - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical