Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;37(3):455-62.
doi: 10.1139/h2012-017. Epub 2012 Apr 12.

Cardiac responses of rats submitted to postnatal protein restriction

Affiliations

Cardiac responses of rats submitted to postnatal protein restriction

Tatiane Moisés Murça et al. Appl Physiol Nutr Metab. 2012 Jun.

Abstract

Undernutrition during critical stages of development and childhood has important effects on cardiovascular homeostasis. The present study was undertaken to evaluate the in vivo and ex vivo cardiac function of rats submitted to postnatal protein restriction. Male Wistar rats (28 days old) were fed a regular (20%) or low-protein (6%) diet over 5 weeks. After this period, cardiac function was analyzed by echocardiography and isolated heart preparation. Furthermore, the density of cardiac noradrenergic fibers and hematological profile were evaluated. We found that malnourished rats exhibited elevated arterial blood pressure, increased fractional shortening (echocardiography), increased systolic tension, increased ±dT/dt (isolated heart technique), impaired diastolic function characterized by a slight increase in the left ventricular end-diastolic diameter (echocardiography) and decreased diastolic tension (isolated heart technique), and cardiac hypertrophy evidenced by augmentation of the posterior left ventricular wall and discrete hematological changes. In addition, malnourished rats exhibited increased noradrenergic fiber density in their hearts (0.08% ± 0.02% area in control rats vs. 0.17% ± 0.03% area in malnourished rats). Our current data demonstrate that postnatal protein restriction causes cardiac adaptation characterized by an early overworking heart. This is at least in part mediated by an increase in the efferent sympathetic fibers to the heart. These findings provide important information for efforts to prevent and manage the consequences of undernutrition in the human population.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources