Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;126(3):549-62.
doi: 10.1093/genetics/126.3.549.

The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae

Affiliations

The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae

E M Hannig et al. Genetics. 1990 Nov.

Abstract

The GCN4 protein of S. cerevisiae is a transcriptional activator of amino acid biosynthetic genes which are subject to general amino acid control. GCN3, a positive regulator required for increased GCN4 expression in amino acid-starved cells, is thought to function by antagonism of one or more negative regulators encoded by GCD genes. We isolated gcn3c alleles that lead to constitutively derepressed expression of GCN4 and amino acid biosynthetic genes under its control. These mutations map in the protein-coding sequences and, with only one exception, do not increase the steady-state level of GCN3 protein. All of the gcn3c alleles lead to derepression of genes under the general control in the absence of GCN1 and GCN2, two other positive regulators of GCN4 expression. This finding suggests that GCN3 functions downstream from GCN1 and GCN2 in the general control pathway. In accord with this idea, constitutively derepressing alleles of GCN2 are greatly dependent on GCN3 for their derepressed phenotype. The gcn3c alleles that are least dependent on GCN1 and GCN2 for derepression cause slow-growth under nonstarvation conditions. In addition, all of the gcn3c alleles are less effective than wild-type GCN3 in overcoming the temperature-sensitive lethality associated with certain mutations in the negative regulator GCD2. These results suggest that activation of GCN3 positive regulatory function by the gcn3c mutations involves constitutive antagonism of GCD2 function, leading to reduced growth rates and derepression of GCN4 expression in the absence of amino acid starvation.

PubMed Disclaimer

References

    1. Mol Cell Biol. 1985 Sep;5(9):2349-60 - PubMed
    1. Mol Gen Genet. 1984;197(2):345-6 - PubMed
    1. Cell. 1987 Mar 27;48(6):1047-60 - PubMed
    1. Genetics. 1987 Nov;117(3):409-19 - PubMed
    1. Gene. 1987;57(2-3):267-72 - PubMed