Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:2012:736837.
doi: 10.1155/2012/736837. Epub 2012 Feb 28.

Glutathione homeostasis and functions: potential targets for medical interventions

Affiliations

Glutathione homeostasis and functions: potential targets for medical interventions

Volodymyr I Lushchak. J Amino Acids. 2012.

Abstract

Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Glutathione is a tripeptide: L-γ-glutamyl-L-cysteinyl-glycine. In its reduced form (a) the N-terminal glutamate and cysteine are linked by the γ-carboxyl group of glutamate, preventing cleavage by common cellular peptidases and restricting cleavage to γ-glutamyltranspeptidase. The cysteine residue is the key functional component of glutathione, providing a reactive thiol group that plays an essential role in its functions. Furthermore, cysteine residues form the intermolecular dipeptide bond in the oxidized glutathione molecule (b).
Figure 2
Figure 2
Glutathione homeostasis involves both intra- and extracellular mechanisms. Glutathione is synthesized in both de novo and salvage synthesis pathways. De novo synthesis requires the three amino acids and energy in the form of ATP. Glutamate may be provided in part from the conversion of a γ-glutamyl amino acid to 5-oxoproline, which is then converted to glutamate. Two ATP molecules are used for the biosynthesis of one GSH molecule. Salvage synthesis involves either reduction of GSSG or uses precursors formed from the hydrolysis of GSH or its conjugates by γ-L-glutamyl transpeptidase at the external surface of the plasma membrane that are transported back into the cell as amino acids or dipeptides. GSH is consumed in various processes. In addition to detoxification of reactive species and electrophiles such as methylglyoxal, GSH is involved in protein glutathionylation and several other processes, such as the biosynthesis of leukotrienes and prostaglandins, and reduction of ribonucleotides. Modified from [27].
Figure 3
Figure 3
Involvement of glutathione in elimination of reactive oxygen and nitrogen species. Hydroxyl radical and nitric oxide (after oxidation to the NO+ form) or peroxynitrite may interact directly with GSH leading to GSSG formation. Hydrogen peroxide may be removed by catalase or by glutathione peroxidase (GPx). The latter requires GSH to reduce peroxide.
Figure 4
Figure 4
The dynamics of reactive oxygen species in biological systems. Steady-state levels of reactive oxygen species fluctuate over a certain range under normal conditions. However, under stress ROS levels may increase or decrease beyond the normal range resulting in acute or chronic oxidative or reductive stress. Under some conditions, ROS levels may not return to their initial range and stabilize at a new quasistationary level.
Figure 5
Figure 5
Operation of the Nrf2/Keap1 system during response to oxidative stress in animals. Under nonstressed conditions the transcription factor Nrf2 binds to the Keap1 homodimer. The resulting protein complex can then further complex with Cullin 3 leading to ubiquitination of Nrf2 followed by proteasomal degradation. Following an oxidative insult or electrophilic attack, Keap1 cannot bind Nrf2 which allows Nrf2 to diffuse into the nucleus and, in concert with small Maf proteins (sMaf), Map and others, Nrf2 binds to the ARE/EpRE elements of regulatory regions in genes encoding antioxidant or phase 2 detoxification enzymes. Nrf2 migration into the nucleus is promoted by at least three different mechanisms: oxidation of Keap thiol groups to form disulfides, modification of Keap1 cysteine residues by electrophiles, or phosphorylation of Nrf2 by protein kinases that, in turn, may be activated by oxidants.
Figure 6
Figure 6
Oxidation of protein cysteine residues to sulfenic, sulfinic, or sulfonic derivatives and formation of glutathionylated proteins. In biological systems, sulfenic and sulfinic derivatives may be reduced by thioredoxin (TR) and sulfiredoxin (Srx), respectively, whereas sulfonic moieties cannot be reduced. Glutathionylated proteins are formed by direct interaction of GSH with sulfenic acid derivatives, exchange between cysteine residues and GSSG, or interaction with oxidized glutathione forms.
Figure 7
Figure 7
Involvement of glutathione in the detoxification of xenobiotics and reactive oxygen species, its relationship with pathological development and the potential role of different phytochemicals. Glutathione is responsible for helping to maintain redox balance by directly or indirectly interacting with ROS, and is also involved in detoxification of electrophiles either via direct interactions or via enzyme-catalysed conjugation. Certain phytochemicals may affect GSH action on ROS and electrophiles either by directly interacting with ROS and electrophiles, or by upregulating defensive enzymes.

References

    1. Diaz Vivancos P, Wolff T, Markovic J, Pallardó FV, Foyer CH. A nuclear glutathione cycle within the cell cycle. Biochemical Journal. 2010;431(2):169–178. - PubMed
    1. Maher P. The effects of stress and aging on glutathione metabolism. Ageing Research Reviews. 2005;4(2):288–314. - PubMed
    1. Pócsi I, Prade RA, Penninckx MJ. Glutathione, altruistic metabolite in fungi. Advances in Microbial Physiology. 2004;49:1–76. - PubMed
    1. Sies H. Glutathione and its role in cellular functions. Free Radical Biology and Medicine. 1999;27(9-10):916–921. - PubMed
    1. Duan S, Chen C. S-nitrosylation/denitrosylation and apoptosis of immune cells. Cellular & Molecular Immunology. 2007;4(5):353–358. - PubMed

LinkOut - more resources