Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 2;61(3):565-78.
doi: 10.1016/j.neuroimage.2012.03.093. Epub 2012 Apr 10.

Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets

Affiliations
Free article

Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets

Anders Eklund et al. Neuroimage. .
Free article

Abstract

The validity of parametric functional magnetic resonance imaging (fMRI) analysis has only been reported for simulated data. Recent advances in computer science and data sharing make it possible to analyze large amounts of real fMRI data. In this study, 1484 rest datasets have been analyzed in SPM8, to estimate true familywise error rates. For a familywise significance threshold of 5%, significant activity was found in 1%-70% of the 1484 rest datasets, depending on repetition time, paradigm and parameter settings. This means that parametric significance thresholds in SPM both can be conservative or very liberal. The main reason for the high familywise error rates seems to be that the global AR(1) auto correlation correction in SPM fails to model the spectra of the residuals, especially for short repetition times. The findings that are reported in this study cannot be generalized to parametric fMRI analysis in general, other software packages may give different results. By using the computational power of the graphics processing unit (GPU), the 1484 rest datasets were also analyzed with a random permutation test. Significant activity was then found in 1%-19% of the datasets. These findings speak to the need for a better model of temporal correlations in fMRI timeseries.

PubMed Disclaimer

Similar articles

Cited by

Publication types