Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;59(1):13-20.
doi: 10.1556/AMicr.59.2012.1.2.

Interaction of methylxanthines and gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: role of phosphodiesterase inhibition

Affiliations

Interaction of methylxanthines and gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: role of phosphodiesterase inhibition

Bibi Sedigheh Fazly Bazzaz et al. Acta Microbiol Immunol Hung. 2012 Mar.

Abstract

Previous studies showed that methylxanthines increased the antimicrobial activity of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. In this study, the effect of non-selective phosphodiesterase (PDE) inhibitors (methylxanthines: aminophylline and caffeine) and partially selective PDE inhibitors, dipyridamole and sildenafil, was evaluated on the antimicrobial activity of gentamicin using checkerboard method. Aminophylline at concentrations of 0.5 and 1 mg/ml reduced the minimal inhibitory concentration (MIC) of gentamicin (2 μg/ml) 2 and 4 times against S. aureus, and at concentrations of 0.5 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. Caffeine at concentrations of 1 and 2 mg/ml reduced the MIC of gentamicin (2 μg/ml) 4 and 32 times against S. aureus, and at concentrations of 0.12 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. However, dipyridamole and sildenafil (32 μg/ml) did not show any effect on MIC of gentamicin against S. aureus and P. aeruginosa. These results suggest that methylxanthines could increase gentamicin effects against S. aureus and P. aeruginosa but this effect is not mediated by inhibition of PDE 5, 6, 8, 10 and 11.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources