Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;23(5):1038-48.
doi: 10.1093/cercor/bhs063. Epub 2012 Apr 17.

Gray matter changes following limb amputation with high and low intensities of phantom limb pain

Affiliations

Gray matter changes following limb amputation with high and low intensities of phantom limb pain

Sandra Preissler et al. Cereb Cortex. 2013 May.

Abstract

Limb amputation and chronic phantom limb pain (PLP) are both associated with neural alterations at all levels of the neuraxis. We investigated gray matter volume of 21 upper limb amputees and 14 healthy control subjects. Results demonstrate that amputation is associated with reduced gray matter in areas in the motor cortex representing the amputated limb. Additionally, patients show an increase in gray matter in brain regions that belong to the dorsal and ventral visual stream. We subdivided the patient group into patients with medium to high PLP (HPLP; N = 11) and those with slight PLP (SPLP; N = 10). HPLP patients showed reduced gray matter in brain areas involved in pain processing. SPLP patients showed a significant gray matter increase in regions of the visual stream. Results indicate that all patients may have an enhanced need for visual control to compensate the lack of sensory feedback of the missing limb. As we found these alterations primarily in the SPLP patient group, successful compensation may have an impact on PLP development. Therefore, we hypothesize that visual adaptation mechanisms may compensate for the lack of sensorimotor feedback and may therefore function as a protection mechanism against high PLP development.

PubMed Disclaimer

Publication types