Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 19;11(4):325-36.
doi: 10.1016/j.chom.2012.03.001.

Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells

Affiliations
Free article

Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells

Makoto Fukumatsu et al. Cell Host Microbe. .
Free article

Abstract

Bacteria move between cells in the epithelium using a sequential pseudopodium-mediated process but the underlying mechanisms remain unclear. We show that during cell-to-cell movement, Shigella-containing pseudopodia target epithelial tricellular junctions, the contact point where three epithelial cells meet. The bacteria-containing pseudopodia were engulfed by neighboring cells only in the presence of tricellulin, a protein essential for tricellular junction integrity. Shigella cell-to-cell spread, but not pseudopodium protrusion, also depended on phosphoinositide 3-kinase, clathrin, Epsin-1, and Dynamin-2, which localized beneath the plasma membrane of the engulfing cell. Depleting tricellulin, Epsin-1, clathrin, or Dynamin-2 expression reduced Shigella cell-to-cell spread, whereas AP-2, Dab2, and Eps15 were not critical for this process. Our findings highlight a mechanism for Shigella dissemination into neighboring cells via targeting of tricellular junctions and a noncanonical clathrin-dependent endocytic pathway.

PubMed Disclaimer

Comment in

Publication types