Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;263(3):758-69.
doi: 10.1148/radiol.12111327. Epub 2012 Apr 20.

Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges

Affiliations

Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges

Eric E Sigmund et al. Radiology. 2012 Jun.

Abstract

Purpose: To assess the reproducibility and the distribution of intravoxel incoherent motion (IVIM) and diffusion-tensor (DT) imaging parameters in healthy renal cortex and medulla at baseline and after hydration or furosemide challenges.

Materials and methods: Using an institutional review board-approved HIPAA-compliant protocol with written informed consent, IVIM and DT imaging were performed at 3 T in 10 volunteers before and after water loading or furosemide administration. IVIM (apparent diffusion coefficient [ADC], tissue diffusivity [D(t)], perfusion fraction [f(p)], pseudodiffusivity [D(p)]) and DT (mean diffusivity [MD], fractional anisotropy [FA], eigenvalues [λ(i)]) imaging parameters and urine output from serial bladder volumes were calculated. (a)Reproducibility was quantified with coefficient of variation, intraclass correlation coefficient, and Bland-Altman limits of agreement; (b) contrast and challenge response were quantified with analysis of variance; and (c) Pearson correlations were quantified with urine output.

Results: Good reproducibility was found for ADC, D(t), MD, FA, and λ(i) (average coefficient of variation, 3.7% [cortex] and 5.0% [medulla]), and moderate reproducibility was found for D(p), f(p), and f(p) · D(p) (average coefficient of variation, 18.7% [cortex] and 25.9% [medulla]). Baseline cortical diffusivities significantly exceeded medullary values except D(p), for which medullary values significantly exceeded cortical values, and λ(1,) which showed no contrast. ADC, D(t), MD, and λ(i) increased significantly for both challenges. Medullary diffusivity increases were dominated by transverse diffusion (1.72 ± 0.09 [baseline] to 1.79 ± 0.10 [hydration] μm(2)/msec, P = .0059; or 1.86 ± 0.07 [furosemide] μm(2)/msec, P = .0094). Urine output correlated with cortical ADC with furosemide (r = 0.7, P = .034) and with medullary λ(1) (r = 0.83, P = .0418), λ(2) (r = 0.85, P = .0301), and MD (r = 0.82, P = .045) with hydration.

Conclusion: Diffusion MR metrics are sensitive to flow changes in kidney induced by diuretic challenges. The results of this study suggest that vascular flow, tubular dilation, water reabsorption, and intratubular flow all play important roles in diffusion-weighted imaging contrast.

PubMed Disclaimer

LinkOut - more resources