Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;48(1):291-301.
doi: 10.1007/s12031-012-9776-7. Epub 2012 Apr 25.

Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier

Affiliations

Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier

Zhen Li et al. J Mol Neurosci. 2012 Sep.

Abstract

Our previous studies have demonstrated that both the RhoA/Rho kinase and the protein kinase C (PKC) signaling pathways are involved in the low-dose endothelial monocyte-activating polypeptide-II (EMAP-II)-induced blood-tumor barrier (BTB) opening. In the present study, an in vitro BTB model was used to investigate which isoforms of PKC were involved in this process as well as the interactions between the RhoA/Rho kinase and the PKC signaling pathways. Our results showed that EMAP-II-activated PKC-α, β, and ζ and induced translocations of them from the cytosolic to the membrane fractions of rat brain microvascular endothelial cells. The EMAP-II-induced alterations in BTB permeability and tight junction (TJ) protein expression were partially blocked by GÖ6976, the inhibitor of PKC-α/β, and PKC-ζ pseudosubstrate inhibitor (PKC-ζ-PI). Meanwhile, we observed that GÖ6976 partly inhibited the EMAP-II-induced rearrangement of actin cytoskeleton as well as phosphorylation of myosin light chain and cofilin, whereas PKC-ζ-PI had no effect on these above-mentioned changes induced by EMAP-II. Also, our data revealed that inhibition of RhoA or inhibition of Rho kinase significantly diminished the activities and the translocations of PKC-α and PKC-β induced by EMAP-II, whereas PKC-ζ was unaffected. However, inhibition of PKC-α/β or inhibition of PKC-ζ did not cause any changes in the RhoA and Rho kinase activities. The effects of EMAP-II on BTB permeability and TJ proteins expression were completely blocked by inhibition of both RhoA and PKC-ζ, whereas inhibition of both RhoA and PKC-α/β had an effect similar to that of inhibition of RhoA alone. In summary, this study demonstrates for the first time that three PKC isoforms, PKC-α, β, and ζ, are involved in the EMAP-II-induced BTB opening. It is PKC-α/β, but not PKC-ζ, which serves as the downstream target for RhoA and Rho kinase, suggesting that EMAP-II induces BTB opening via the RhoA/Rho kinase/PKC-α/β signaling pathways. However, PKC-ζ is involved in this process by other mechanisms.

PubMed Disclaimer

References

    1. J Physiol. 2006 Jul 1;574(Pt 1):275-81 - PubMed
    1. Curr Opin Cell Biol. 1997 Apr;9(2):161-7 - PubMed
    1. Endothelium. 1997;5(4):321-32 - PubMed
    1. Biochem Biophys Res Commun. 2005 Feb 25;327(4):1114-23 - PubMed
    1. Semin Cell Dev Biol. 2000 Aug;11(4):301-8 - PubMed

Publication types

MeSH terms

LinkOut - more resources