Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Dec 15;50(24):7915-9.

Pharmacokinetics and metabolism of cyclopentenyl cytosine in nonhuman primates

Affiliations
  • PMID: 2253232
Comparative Study

Pharmacokinetics and metabolism of cyclopentenyl cytosine in nonhuman primates

S M Blaney et al. Cancer Res. .

Abstract

The plasma and cerebrospinal fluid pharmacokinetics of cyclopentenyl cytosine (CPE-C) were studied following i.v. bolus and continuous i.v. infusion in male rhesus monkeys. Following an i.v. bolus dose of 100 mg/m2 plasma elimination of CPE-C was biexponential with a mean t1/2 alpha of 8.4 min, a mean t1/2 beta of 36 min, and a total clearance (CLTB) of 662 ml/min/m2, which is 5- to 10-fold higher than clearance rates in rodents and dogs. Less than 20% of the total dose of CPE-C was excreted unchanged in the urine. The remainder was excreted as the inactive deamination product cyclopentenyl uridine (CPE-U). The ratio of the areas under the plasma concentration versus time curves of CPE-U to CPE-C was 7.0 +/- 2.4 following i.v. bolus CPE-C. The cerebrospinal fluid:plasma ratios of CPE-C and CPE-U were 0.08 and 0.30, respectively. Continuous i.v. infusion of CPE-C was compared to continuous infusion of 1-beta-D-arabinofuranosylcytosine in two monkeys. Steady state plasma concentrations, normalized to a dose of 12.5 mg/m2/h of CPE-C and an equimolar dose of 1-beta-D-arabinofuranosylcytosine, were 2.1 and 0.53 microM, respectively. The steady state concentrations of their corresponding uridine metabolites (CPE-U and 1-beta-D-arabinofuranosyluridine) were 8.2 and 15.5 microM. The rapid elimination of CPE-C by deamination in the primate resulted in a much higher CLTB and considerably lower total drug exposure than in rodents and dogs that clear CPE-C at a much lower rate by renal excretion. These significant interspecies differences in the disposition of CPE-C should be considered in the selection of a starting dose and schedule for human trials and suggest that a pharmacologically directed dose escalation scheme should be used in the planned phase I studies.

PubMed Disclaimer

Publication types

LinkOut - more resources