(G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD
- PMID: 22539006
- PMCID: PMC3438494
- DOI: 10.1038/cdd.2012.42
(G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD
Abstract
(G2019S) mutation of leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of both familial and sporadic Parkinson's disease (PD) cases. Twelve- to sixteen-month-old (G2019S) LRRK2 transgenic mice prepared by us displayed progressive degeneration of substantia nigra pars compacta (SNpc) dopaminergic neurons and parkinsonism phenotypes of motor dysfunction. LRRK2 is a member of mixed lineage kinase subfamily of mitogen-activated protein kinase kinase kinases (MAPKKKs). We hypothesized that (G2019S) mutation augmented LRRK2 kinase activity, leading to overphosphorylation of downstream MAPK kinase (MKK) and resulting in activation of neuronal death signal pathway. Consistent with our hypothesis, (G2019S) LRRK2 expressed in HEK 293 cells exhibited an augmented kinase activity of phosphorylating MAPK kinase 4 (MKK4) at Ser(257), and protein expression of active phospho-MKK4(Ser257) was upregulated in the SN of (G2019S) LRRK2 transgenic mice. Protein level of active phospho-JNK(Thr183/Tyr185) and phospho-c-Jun(Ser63), downstream targets of phospho-MKK4(Ser257), was increased in the SN of (G2019S) LRRK2 mice. Upregulated mRNA expression of pro-apoptotic Bim and FasL, target genes of phospho-c-Jun(Ser63), and formation of active caspase-9, caspase-8 and caspase-3 were also observed in the SN of (G2019S) LRRK2 transgenic mice. Our results suggest that mutant (G2019S) LRRK2 activates MKK4-JNK-c-Jun pathway in the SN and causes the resulting degeneration of SNpc dopaminergic neurons in PD transgenic mice.
Figures
References
-
- Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. The genetics of Parkinson's syndromes: a critical review. Curr Opin Genet Dev. 2009;19:254–265. - PubMed
-
- Lesage S, Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18:48–59. - PubMed
-
- Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301. - PubMed
-
- Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron. 2004;44:595–600. - PubMed
-
- Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–607. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
