Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct;66(1):1-19.
doi: 10.1111/j.1574-695X.2012.00980.x. Epub 2012 May 21.

The role of Borrelia burgdorferi outer surface proteins

Affiliations
Review

The role of Borrelia burgdorferi outer surface proteins

Melisha R Kenedy et al. FEMS Immunol Med Microbiol. 2012 Oct.

Abstract

Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.

PubMed Disclaimer

Figures

Figure 1
Figure 1

References

    1. Akins DR, Porcella SF, Popova TG, Shevchenko D, Baker SI, Li M, et al. Evidence for in vivo but not in vitro expression of a Borrelia burgdorferi outer surface protein F (OspF) homolog. Mol Microbiol. 1995;18:507–520. - PubMed
    1. Alitalo A, Meri T, Chen T, Lankinen H, Cheng ZZ, Jokiranta TS, et al. Lysine-dependent multipoint binding of the Borrelia burgdorferi virulence factor outer surface protein E to the C terminus of factor H. J Immunol. 2004;172:6195–6201. - PubMed
    1. Alitalo A, Meri T, Lankinen H, Seppala I, Lahdenne P, Hefty PS, et al. Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol. 2002;169:3847–3853. - PubMed
    1. Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS. Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol. 2003;48:1665–1677. - PubMed
    1. Antonara S, Chafel RM, LaFrance M, Coburn J. Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol. 2007;66:262–276. - PMC - PubMed

Publication types