Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012 Apr 27:10:33.
doi: 10.1186/1477-7827-10-33.

GnRH agonist versus GnRH antagonist in assisted reproduction cycles: oocyte morphology

Affiliations
Randomized Controlled Trial

GnRH agonist versus GnRH antagonist in assisted reproduction cycles: oocyte morphology

Ana Marcia M Cota et al. Reprod Biol Endocrinol. .

Abstract

Background: The selection of developmentally competent human gametes may increase the efficiency of assisted reproduction. Spermatozoa and oocytes are usually assessed according to morphological criteria. Oocyte morphology can be affected by the age, genetic characteristics, and factors related to controlled ovarian stimulation. However, there is a lack of evidence in the literature concerning the effect of gonadotropin-releasing hormone (GnRH) analogues, either agonists or antagonists, on oocyte morphology. The aim of this randomized study was to investigate whether the prevalence of oocyte dysmorphism is influenced by the type of pituitary suppression used in ovarian stimulation.

Methods: A total of 64 patients in the first intracytoplasmic sperm injection (ICSI) cycle were prospectively randomized to receive treatment with either a GnRH agonist with a long-term protocol (n: 32) or a GnRH antagonist with a multi-dose protocol (n: 32). Before being subjected to ICSI, the oocytes at metaphase II from both groups were morphologically analyzed under an inverted light microscope at 400x magnification. The oocytes were classified as follows: normal or with cytoplasmic dysmorphism, extracytoplasmic dysmorphism, or both. The number of dysmorphic oocytes per total number of oocytes was analyzed.

Results: Out of a total of 681 oocytes, 189 (27.8%) were morphologically normal, 220 (32.3%) showed cytoplasmic dysmorphism, 124 (18.2%) showed extracytoplasmic alterations, and 148 (21.7%) exhibited both types of dysmorphism. No significant difference in oocyte dysmorphism was observed between the agonist- and antagonist-treated groups (P>0.05). Analysis for each dysmorphism revealed that the most common conditions were alterations in polar body shape (31.3%) and the presence of diffuse cytoplasmic granulations (22.8%), refractile bodies (18.5%) and central cytoplasmic granulations (13.6%). There was no significant difference among individual oocyte dysmorphisms in the agonist- and antagonist-treated groups (P>0.05).

Conclusions: Our randomized data indicate that in terms of the quality of oocyte morphology, there is no difference between the antagonist multi-dose protocol and the long-term agonist protocol. If a GnRH analogue used for pituitary suppression in IVF cycles influences the prevalence of oocyte dysmorphisms, there does not appear to be a difference between the use of an agonist as opposed to an antagonist.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Oocytes with normal and abnormal morphology: (A) normal oocyte, (B) black arrow: smooth endoplasmic reticulum (SER) aggregations; white arrow: abnormal polar body (C) large perivitelline space (D) abnormal oocyte shape (E) black arrow: central cytoplasmic granulation; white arrow: abnormal polar body (F) cytoplasmic vacuoles (G) black arrow: refractile bodies; white arrow: smooth endoplasmic reticulum (SER) aggregations (H) black arrow: dark thick zona pellucida and cytoplasm; white arrow: abnormal polar body.

References

    1. Rienzi L, Ubaldi FM, Iacobelli M, Minasi MG, Romano S, Ferrero S, Sapienza F, Baroni E, Litwicka K, Greco E. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril. 2008;90:1692–1700. - PubMed
    1. de Bruin JP, Dorland M, Spek ER, Posthuma G, van Haaften M, Looman CW, te Velde ER. Age-related changes in the ultrastructure of the resting follicle pool in human ovaries. Biol Reprod. 2004;70:419–424. - PubMed
    1. Rashidi BH, Sarvi F, Tehrani ES, Zayeri F, Movahedin M, Khanafshar N. The effect of HMG and recombinant human FSH on oocyte quality: a randomized single-blind clinical trial. Eur J Obstet Gynecol Reprod Biol. 2005;120:190–194. - PubMed
    1. Murber A, Fancsovits P, Ledo N, Gilan ZT, Rigo J, Urbancsek J. Impact of GnRH analogues on oocyte/embryo quality and embryo development in in vitro fertilization/intracytoplasmic sperm injection cycles: a case control study. Reprod Biol Endocrinol. 2009;7:103. - PMC - PubMed
    1. Janssens RM, Lambalk CB, Vermeiden JP, Schats R, Bernards JM, Rekers-Mombarg LT, Schoemaker J. Dose-finding study of triptorelin acetate for prevention of a premature LH surge in IVF: a prospective, randomized, double-blind, placebo-controlled study. Hum Reprod. 2000;15:2333–2340. - PubMed

Publication types

MeSH terms