Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 27;46(2):147-58.
doi: 10.1016/j.molcel.2012.04.005.

Torque generation of kinesin motors is governed by the stability of the neck domain

Affiliations

Torque generation of kinesin motors is governed by the stability of the neck domain

Melanie Brunnbauer et al. Mol Cell. .

Abstract

In long-range transport of cargo, prototypical kinesin-1 steps along a single protofilament on the microtubule, an astonishing behavior given the number of theoretically available binding sites on adjacent protofilaments. Using a laser trap assay, we analyzed the trajectories of several representatives from the kinesin-2 class on freely suspended microtubules. In stark contrast to kinesin-1, these motors display a wide range of left-handed spiraling around microtubules and thus generate torque during cargo transport. We provide direct evidence that kinesin's neck region determines the torque-generating properties. A model system based on kinesin-1 corroborates this result: disrupting the stability of the neck by inserting flexible peptide stretches resulted in pronounced left-handed spiraling. Mimicking neck stability by crosslinking significantly reduced the spiraling of the motor up to the point of protofilament tracking. Finally, we present a model that explains the physical basis of kinesin's spiraling around the microtubule.

PubMed Disclaimer

Publication types