Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Dec;172(12):6959-72.
doi: 10.1128/jb.172.12.6959-6972.1990.

Heat shock response of murine Chlamydia trachomatis

Affiliations
Comparative Study

Heat shock response of murine Chlamydia trachomatis

J N Engel et al. J Bacteriol. 1990 Dec.

Abstract

We have investigated the heat shock response in the mouse pneumonitis strain of Chlamydia trachomatis. The kinetics of the chlamydial heat shock response resembled that of other procaryotes: the induction was rapid, occurring over a 5- to 10-min time period, and was regulated at the level of transcription. Immunoblot analysis and immunoprecipitations with heterologous antisera to the heat shock proteins DnaK and GroEL demonstrated that the rate of synthesis, but not the absolute amount of these two proteins, increased after heat shock. Using a general screen for genes whose mRNAs are induced by heat shock, we identified and cloned two of these. DNA sequence analysis demonstrated that one of the genes is a homolog of dnaK. Further sequence analysis of the region upstream of the dnaK gene revealed that the chlamydial homolog of the grpE gene is located just adjacent to the dnaK gene. The second locus encoded three potential nonoverlapping open reading frames. One of the open reading frames was 52% homologous to the ribosomal protein S18 of Escherichia coli and thus presumably encodes the chlamydial homolog. Interestingly, this ribosomal protein is not known to be induced by heat shock in E. coli. S1 nuclease and primer extension analyses located the start site of the dnaK transcript to the last nucleotide of the grpE coding sequence, suggesting that these two genes, although tandemly arranged, are transcribed separately. No promoter sequences resembling the E. coli consensus heat shock promoter could be identified upstream of either the C. trachomatis dnaK, grpE, or S18 gene. The induction of the dnaK and S18 mRNAs by heat shock occurred at a transcriptional level; their induction could be blocked by rifampin. The mechanisms of induction for these two loci were not the same, however; they were differentially sensitive to chloramphenicol. Whereas the induction of dnaK mRNA required de novo protein synthesis, the induction of the S18 mRNA did not. Thus, C. trachomatis utilizes at least two different pathways to induce the transcription of mRNAs encoding proteins induced in the heat shock response.

PubMed Disclaimer

References

    1. Genes Dev. 1987 Jul;1(5):419-32 - PubMed
    1. Genes Dev. 1987 Apr;1(2):179-84 - PubMed
    1. Am J Ophthalmol. 1967 May;63(5):Suppl:1133-45 - PubMed
    1. Am J Ophthalmol. 1967 May;63(5):Suppl:1615-30 - PubMed
    1. Am J Ophthalmol. 1967 May;63(5):Suppl:1645-50 - PubMed

Publication types

MeSH terms

Associated data