Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012 Oct;44(10):1949-57.
doi: 10.1249/MSS.0b013e31825abc7c.

Effects of dehydration during cycling on skeletal muscle metabolism in females

Affiliations
Randomized Controlled Trial

Effects of dehydration during cycling on skeletal muscle metabolism in females

Heather M Logan-Sprenger et al. Med Sci Sports Exerc. 2012 Oct.

Abstract

Introduction: This study investigated the effects of progressive dehydration on the time course of changes to whole body substrate oxidation and skeletal muscle metabolism during 120 min of cycling in hydrated females.

Methods: Subjects (n = 9) cycled for 120 min at approximately 65% VO(2peak) on two occasions: with no fluid (DEH) and with fluid (HYD) replacement to match sweat losses. Venous blood samples were taken at rest and every 20 min and muscle biopsies taken at 0, 60, and 120 min of exercise.

Results: DEH subjects lost 0.9% body mass from 0 to 60 min and 1.1% from 60 to 120 min (2.0% total). HR and core temperature (Tc) were significantly greater from 30 to 120 min, plasma volume (Pvol) loss from 40 to 120 min, and RPE from 60 to 120 min in the DEH trial. There were no differences in VO(2) or sweat loss between trials. RER (HYD, 0.85 ± 0.01, vs. DEH, 0.87 ± 0.01) and total CHO oxidation (175 ± 17 vs. 191 ± 17 g) were higher in the DEH trial. Blood (La) was significantly higher in the DEH trial, with no change in plasma free fatty acid and epinephrine concentrations. Muscle glycogenolysis was 31% greater in the DEH trial (252 ± 49 vs. 330 ± 33 mmol.kg(-1) dry muscle), and muscle (La) was also higher at 60 min.

Conclusion: Progressive dehydration significantly increased HR, Tc, RPE, Pvol loss, whole body CHO oxidation, and muscle glycogenolysis, and these changes were already apparent in the first hour of exercise when body mass losses were ≤ 1%. The increased muscle glycogenolysis with DEH appeared to be due to increased core and muscle temperature, secondary to less efficient movement of heat from the core to the periphery.

PubMed Disclaimer

Publication types

LinkOut - more resources