Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Apr;19(2):291-302.
doi: 10.1583/11-3766R.1.

Percutaneous venous valve designs for treatment of deep venous insufficiency

Affiliations
Review

Percutaneous venous valve designs for treatment of deep venous insufficiency

Gert Jan de Borst et al. J Endovasc Ther. 2012 Apr.

Abstract

At present, no widely accepted surgical options exist for treating chronic deep venous insufficiency (CDVI). Experimental efforts to improve catheter-based management for CDVI have shown disappointing results, hindering application of these techniques in the clinical arena. A review of the literature focusing on technical aspects of valve stent design was conducted. Eight experimental studies were scrutinized to derive data on (1) stent design and configuration; (2) valve design, composition, and configuration; (3) delivery system; (4) functional outcome; and (5) histology to provide a basis for the design of a new prosthetic venous valve. The analysis of available experimental data found that all prosthetic valve designs currently under development/testing rely on some type of a stent to act as a carrier or frame for valve attachment. Most valve models reviewed were for the most part implanted safely and accurately, with good short-term patency and competency. The most commonly reported adverse event was thrombosis, which limited durability. It is assumed that valve configuration determines long-term results after repair. Hence, the newly proposed valve design consisted of 2 stent rings without barbs to fix the valve in the host vein. Because a little reflux might actually benefit the patency of the valve, the valve cusp in the new design forms a billowing "sail" that does not completely open or close, which also prevents the valve cusp from sticking to the wall. This technology remains of great interest to the interventionist and all physicians who are involved in the care for patients with advanced chronic venous disease. Valve design remains a challenge, but promising new valve substitutes such as the one outlined here are under evaluation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources