Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;295(6):939-49.
doi: 10.1002/ar.22485. Epub 2012 May 2.

The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E

Affiliations
Free article

The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E

Gamal S Abd El-Aziz et al. Anat Rec (Hoboken). 2012 Jun.
Free article

Abstract

Methylmercury (MeHg) is an environmental contaminant that is found in many ecosystems. Many studies reported that MeHg toxicity is accompanied by increased lipid peroxidation that may lead to oxidative damage to DNA, RNA, and proteins. Vitamin E is considered as the most effective antioxidant preventing lipid peroxidation. The aim of this study was to evaluate the effects of MeHg exposure during pregnancy on the development of the appendicular skeleton in rat fetuses and whether vitamin E administration could reduce this toxicity. Positively mated adult female Sprague-Dawley rats were used and divided into the following experimental groups: control group, received only deionized water, and four MeHg treated groups received 1 mg of MeHg/kg/d, 2 mg of MeHg/kg/d, 1 mg of MeHg/kg/d plus 150 mg of vitamin E/kg/d, and 2 mg of MeHg/kg/d, plus 150 mg of vitamin E/kg/d starting from Day 0 of gestation. On Day 20 of gestation, the fetuses from the pregnant rats were extracted and the fetal growth parameters were evaluated. Skeletal evaluation of ossification of both fore- and hind-limbs, and coxal bones were undertaken. Results showed that treatment with MeHg caused adverse effects on fetal growth parameters and ossification of the bones. The coadministration of vitamin E with MeHg revealed an improvement in these parameters. These results suggest that vitamin E may ameliorate some aspects of MeHg developmental toxicity. The underlying and human health implications warrant further investigations.

PubMed Disclaimer

MeSH terms

LinkOut - more resources