Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 May 29;125(21):2603-12.
doi: 10.1161/CIRCULATIONAHA.111.075283. Epub 2012 May 1.

Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis

Affiliations
Comparative Study

Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis

Hyeyoung Moon et al. Circulation. .

Abstract

Background: Limited availability of noninvasive and biologically precise diagnostic tools poses a challenge for the evaluation and management of patients with myocarditis.

Methods and results: The feasibility of cardiovascular magnetic resonance (CMR) imaging with magneto-fluorescent nanoparticles (MNPs) for detection of myocarditis and its effectiveness in discriminating inflammation grades were assessed in experimental autoimmune myocarditis (EAM) (n=65) and control (n=10) rats. After undergoing CMR, rats were administered with MNPs, followed by a second CMR 24 hours later. Head-to-head comparison of MNP-CMR with T(2)-weighted, early and late gadolinium enhancement CMR was performed in additional EAM (n=10) and control (n=5) rats. Contrast-to-noise ratios were measured and compared between groups. Flow cytometry and microscopy demonstrated that infiltrating inflammatory cells engulfed MNPs, resulting in altered myocardial T(2)* effect. Changes in contrast-to-noise ratio between pre- and post-MNP CMR were significantly greater in EAM rats (1.08 ± 0.10 versus 0.48 ± 0.20; P<0.001). In addition, contrast-to-noise ratio measurement in MNP-CMR clearly detected the extent of inflammation (P<0.001) except for mild inflammation. Compared with conventional CMR, MNP-CMR provided better image contrast (CNR change 8% versus 46%, P<0.001) and detectability of focal myocardial inflammation. Notably, MNP-CMR successfully tracked the evolution of myocardial inflammation in the same EAM rats.

Conclusions: Magneto-fluorescent nanoparticle CMR permitted effective visualization of myocardial inflammatory cellular infiltrates and distinction of the extent of inflammation compared with conventional CMR in a preclinical model of EAM. Magneto-fluorescent nanoparticle CMR performs best in EAM rats with at least moderate inflammatory response.

PubMed Disclaimer

Publication types

LinkOut - more resources