Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May 2:8:49.
doi: 10.1186/1746-6148-8-49.

Evaluation of combined high-efficiency DNA extraction and real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in subclinically infected dairy cattle: comparison with faecal culture, milk real-time PCR and milk ELISA

Affiliations

Evaluation of combined high-efficiency DNA extraction and real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in subclinically infected dairy cattle: comparison with faecal culture, milk real-time PCR and milk ELISA

Katarina Logar et al. BMC Vet Res. .

Abstract

Background: Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (Map) and it is one of the most important diseases in cattle worldwide. Several laboratory tests for Map detection are available; however, these are limited by inadequate sensitivity and specificity when used in subclinically infected populations. To identify Map shedders in subclinically infected cattle, we used a new, high-yield method for DNA-extraction from Map in faeces combined with quantitative real-time PCR (qPCR) for amplification of the insertion sequence IS900 of Map (HYDEqPCR). Evaluation of HYDEqPCR was carried out in comparison with faecal culture, milk qPCR, and milk enzyme-linked immunosorbent assay (ELISA), on 141 faecal and 91 milk samples, from 141 subclinically infected dairy cattle.

Results: The qPCR proved to be highly sensitive, with a detection limit of 2 IS900 DNA copies/μl in 67 % of the reactions. It also showed 100 % specificity, as determined from 50 Map and non-Map strains, and by the sequencing of qPCR amplicons. The detection limit of HYDEqPCR was 90 Map/g Map-spiked faeces, which corresponds to 2.4 colony forming units/g Map-spiked faeces, with an estimated efficiency of 85 % (±21 %). When tested on the field samples, HYDEqPCR showed 89 % of the samples as positive for Map, whereas faecal culture, milk qPCR, and milk ELISA detected 19 %, 36 % and 1 %, respectively. Fisher's exact tests only show statistical significance (p ≤0.05) for the correlation between HYDEqPCR and faecal culture. The agreement between HYDEqPCR and milk qPCR and milk ELISA was poor, slight, and non-significant.

Conclusions: This study highlights the advantages of HYDEqPCR for detection of Map in subclinically infected populations, in comparison with faecal culture, milk qPCR and milk ELISA. HYDEqPCR can detect low-level Map shedders that go undetected using these other methods, which will thus underestimate the proportions of Map-shedders in herds. Identification of these shedding animals is extremely important for prevention of the spread of Map infection in an animal population. Due to the relatively high sensitivity and specificity of HYDEqPCR, it can be applied to test for Map at the herd or individual level, regardless of animal age or production stage. HYDEqPCR will allow early detection and control of Map in any population at risk.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Linear regression curve for the plasmid DNA. The dilutions of the plasmid DNA (carrying the IS900 DNA insert of the clinical Map isolate from the Internal Collection of the Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana) in sterile distilled water are shown on a logarithmic scale, plotted against the corresponding Cq values.
Figure 2
Figure 2
Quantitative detection ofMycobacterium aviumsubsp.paratuberculosisin Map-spiked faeces using HYDEqPCR. Linear regression curve of the isolated Map DNA plotted against the logarithm of the Map CFU/g faeces determined.
Figure 3
Figure 3
Identification of the Map-positive faecal and milk samples, as detected using the four detection methods.

Similar articles

Cited by

References

    1. Ott SL, Wells SJ, Wagner BA. Herd-level economic losses associated with Johne's disease on US dairy operations. Prev Vet Med. 1999;40:179–192. doi: 10.1016/S0167-5877(99)00037-9. - DOI - PubMed
    1. Whitlock RH, Buergelt C. Preclinical and clinical manifestations of paratuberculosis (including pathology) Vet Clin North Am Food Anim Pract. 1996;12:345–356. - PubMed
    1. Wells SJ, Wagner BA. Herd-level risk factors for infection withMycobacterium paratuberculosisin US dairies and association between familiarity of the herd manager with the disease or prior diagnosis of the disease in that herd and use of preventive measures. J Am Vet Med Assoc. 2000;216:1450–1457. doi: 10.2460/javma.2000.216.1450. - DOI - PubMed
    1. Ayele WY, Machackova M, Pavlik I. The transmission and impact of paratuberculosis infection in domestic and wild ruminants. Vet Med-Czech. 2001;46:205–224.
    1. Collins MT. Diagnosis of paratuberculosis. Vet Clin North Am Food Anim Pract. 1996;12:357–371. - PubMed

Publication types

MeSH terms