Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May 2;5(1):24.
doi: 10.1186/1755-8166-5-24.

Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study

Affiliations

Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study

Zhihong Yang et al. Mol Cytogenet. .

Abstract

Background: Single embryo transfer (SET) remains underutilized as a strategy to reduce multiple gestation risk in IVF, and its overall lower pregnancy rate underscores the need for improved techniques to select one embryo for fresh transfer. This study explored use of comprehensive chromosomal screening by array CGH (aCGH) to provide this advantage and improve pregnancy rate from SET.

Methods: First-time IVF patients with a good prognosis (age <35, no prior miscarriage) and normal karyotype seeking elective SET were prospectively randomized into two groups: In Group A, embryos were selected on the basis of morphology and comprehensive chromosomal screening via aCGH (from d5 trophectoderm biopsy) while Group B embryos were assessed by morphology only. All patients had a single fresh blastocyst transferred on d6. Laboratory parameters and clinical pregnancy rates were compared between the two groups.

Results: For patients in Group A (n = 55), 425 blastocysts were biopsied and analyzed via aCGH (7.7 blastocysts/patient). Aneuploidy was detected in 191/425 (44.9%) of blastocysts in this group. For patients in Group B (n = 48), 389 blastocysts were microscopically examined (8.1 blastocysts/patient). Clinical pregnancy rate was significantly higher in the morphology + aCGH group compared to the morphology-only group (70.9 and 45.8%, respectively; p = 0.017); ongoing pregnancy rate for Groups A and B were 69.1 vs. 41.7%, respectively (p = 0.009). There were no twin pregnancies.

Conclusion: Although aCGH followed by frozen embryo transfer has been used to screen at risk embryos (e.g., known parental chromosomal translocation or history of recurrent pregnancy loss), this is the first description of aCGH fully integrated with a clinical IVF program to select single blastocysts for fresh SET in good prognosis patients. The observed aneuploidy rate (44.9%) among biopsied blastocysts highlights the inherent imprecision of SET when conventional morphology is used alone. Embryos randomized to the aCGH group implanted with greater efficiency, resulted in clinical pregnancy more often, and yielded a lower miscarriage rate than those selected without aCGH. Additional studies are needed to verify our pilot data and confirm a role for on-site, rapid aCGH for IVF patients contemplating fresh SET.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic for patients randomized either to embryo assessment by standard morphology plus aCGH (A) or morphology alone (B). Withdrawals, deferrals and drop-outs for each group are circled in red. The total number of blastocysts associated with each group is circled in blue.
Figure 2
Figure 2
Representative aCGH data obtained from human blastocysts via trophectoderm biopsy performed on post-fertilization day 5. While standard microscopy confirmed good morphology (Grade 5AA) for both blastocysts, ploidy status was not uniform. Using aCGH to screen embryos before fresh transfer, normal chromosomal status (46,XX) was verified in A, but not in B (45,XY,-12).

References

    1. Coetsier T, Dhont M. Avoiding multiple pregnancies in in-vitro fertilization: who’s afraid of single embryo transfer? Hum Reprod. 1998;13:2663–2664. doi: 10.1093/humrep/13.10.2663. - DOI - PubMed
    1. Ryan G, Sparks A, Sipe C, Syrop C, Dokras A, Van Voorthis B. A mandatory single blastocyst transfer policy with educational campaign in a United States IVF program reduces multiple gestation rates without sacrificing pregnancy rates. Fertil Steril. 2007;88:354–360. doi: 10.1016/j.fertnstert.2007.03.001. - DOI - PubMed
    1. Zander-Fox DL, Tremellen K, Lane M. Single blastocyst embryo transfer maintains comparable pregnancy rates to double cleavage-stage embryo transfer but results in healthier pregnancy outcomes. Aust N Z J Obstet Gynaecol. 2011;51:406–410. doi: 10.1111/j.1479-828X.2011.01324.x. - DOI - PubMed
    1. Maheshwari A, Griffiths S, Bhattacharya S. Global variations in the uptake of single embryo transfer. Human Reprod Update. 2011;17:107–120. doi: 10.1093/humupd/dmq028. - DOI - PubMed
    1. Gardner DK, Surrey E, Minjarrez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–555. doi: 10.1016/j.fertnstert.2003.07.023. - DOI - PubMed