Bioinformatics and variability in drug response: a protein structural perspective
- PMID: 22552919
- PMCID: PMC3367825
- DOI: 10.1098/rsif.2011.0843
Bioinformatics and variability in drug response: a protein structural perspective
Abstract
Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk-benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein-drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein-drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants.
Figures






Similar articles
-
Application of graph-based analysis of genomic sequence context for characterization of drug targets.Curr Drug Discov Technol. 2006 Sep;3(3):175-88. doi: 10.2174/157016306780136808. Curr Drug Discov Technol. 2006. PMID: 17311563
-
[Development of antituberculous drugs: current status and future prospects].Kekkaku. 2006 Dec;81(12):753-74. Kekkaku. 2006. PMID: 17240921 Review. Japanese.
-
Inferring protein domains associated with drug side effects based on drug-target interaction network.BMC Syst Biol. 2013;7 Suppl 6(Suppl 6):S18. doi: 10.1186/1752-0509-7-S6-S18. Epub 2013 Dec 13. BMC Syst Biol. 2013. PMID: 24565527 Free PMC article.
-
Combinations of protein-chemical complex structures reveal new targets for established drugs.PLoS Comput Biol. 2011 May;7(5):e1002043. doi: 10.1371/journal.pcbi.1002043. Epub 2011 May 5. PLoS Comput Biol. 2011. PMID: 21573205 Free PMC article.
-
Chemical-protein interactome and its application in off-target identification.Interdiscip Sci. 2011 Mar;3(1):22-30. doi: 10.1007/s12539-011-0051-8. Epub 2011 Mar 3. Interdiscip Sci. 2011. PMID: 21369884 Review.
Cited by
-
Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities.Int J Mol Sci. 2014 Oct 20;15(10):18856-91. doi: 10.3390/ijms151018856. Int J Mol Sci. 2014. PMID: 25334061 Free PMC article. Review.
-
Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region.Sci Rep. 2018 Jan 17;8(1):903. doi: 10.1038/s41598-017-19075-2. Sci Rep. 2018. PMID: 29343701 Free PMC article.
-
CEP proteins: the knights of centrosome dynasty.Protoplasma. 2013 Oct;250(5):965-83. doi: 10.1007/s00709-013-0488-9. Epub 2013 Feb 28. Protoplasma. 2013. PMID: 23456457 Review.
-
Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design.Int J Parasitol Drugs Drug Resist. 2016 Dec;6(3):343-355. doi: 10.1016/j.ijpddr.2016.06.003. Epub 2016 Jul 1. Int J Parasitol Drugs Drug Resist. 2016. PMID: 27682347 Free PMC article.
-
Antibacterial mechanisms identified through structural systems pharmacology.BMC Syst Biol. 2013 Oct 10;7:102. doi: 10.1186/1752-0509-7-102. BMC Syst Biol. 2013. PMID: 24112686 Free PMC article.
References
-
- Rask-Andersen M., Almen M. S., Schioth H. B. 2011. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 10.1038/nrd3478 (doi:10.1038/nrd3478) - DOI - DOI - PubMed
-
- Pammolli F., Magazzini L., Riccaboni M. 2011. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 10, 428–438 10.1038/nrd3405 (doi:10.1038/nrd3405) - DOI - DOI - PubMed
-
- Watkins P. B. 2011. Drug safety sciences and the bottleneck in drug development. Clin. Pharmacol. Ther. 89, 788–790 10.1038/clpt.2011.63 (doi:10.1038/clpt.2011.63) - DOI - DOI - PubMed
-
- Lesko L. J., Woodcock J. 2004. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat. Rev. Drug Discov. 3, 763–769 10.1038/nrd1499 (doi:10.1038/nrd1499) - DOI - DOI - PubMed
-
- Wilkinson G. R. 2005. Drug metabolism and variability among patients in drug response. N. Engl. J. Med. 352, 2211–2221 10.1056/NEJMra032424 (doi:10.1056/NEJMra032424) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous