Ginkgo biloba extract reduces high-glucose-induced endothelial adhesion by inhibiting the redox-dependent interleukin-6 pathways
- PMID: 22553973
- PMCID: PMC3434011
- DOI: 10.1186/1475-2840-11-49
Ginkgo biloba extract reduces high-glucose-induced endothelial adhesion by inhibiting the redox-dependent interleukin-6 pathways
Abstract
Background: Chronic elevation of glucose level activates vascular inflammation and increases endothelial adhesiveness to monocytes, an early sign of atherogenesis. This study aimed to elucidate the detailed mechanisms of high-glucose-induced endothelial inflammation, and to investigate the potential effects of Ginkgo biloba extract (GBE), an antioxidant herbal medicine, on such inflammation.
Materials and methods: Human aortic endothelial cells were cultured in high glucose or mannitol as osmotic control for 4 days. The expression of cytokines and adhesion molecules and the adhesiveness of endothelial cells to monocytes were examined. The effects of pretreatment of GBE or N-acetylcysteine, an antioxidant, were also investigated.
Results: Either high glucose or mannitol significantly increased reactive oxygen species (ROS) production, interleukin-6 secretion, intercellular adhesion molecule-1 (ICAM-1) expression, as well as endothelial adhesiveness to monocytes. The high-glucose-induced endothelial adhesiveness was significantly reduced either by an anti-ICAM-1 antibody or by an interleukin-6 neutralizing antibody. Interleukin-6 (5 ng/ml) significantly increased endothelial ICAM-1 expression. Piceatannol, a signal transducer and activator of transcription (STAT) 1/3 inhibitor, but not fludarabine, a STAT1 inhibitor, suppressed high-glucose-induced ICAM-1 expression. Pretreatment with GBE or N-acetylcysteine inhibited high-glucose-induced ROS, interleukin-6 production, STAT1/3 activation, ICAM-1 expression, and endothelial adhesiveness to monocytes.
Conclusions: Long-term presence of high glucose induced STAT3 mediated ICAM-1 dependent endothelial adhesiveness to monocytes via the osmotic-related redox-dependent interleukin-6 pathways. GBE reduced high-glucose-induced endothelial inflammation mainly by inhibiting interleukin-6 activation. Future study is indicated to validate the antioxidant/anti-inflammatory strategy targeting on interleukin-6 for endothelial protection in in vivo and clinical hyperglycemia.
Figures
References
-
- Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C, Remuzzi G. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest. 1998;101(9):1905–1915. doi: 10.1172/JCI656. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
