Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;41(2):309-16.
doi: 10.1183/09031936.00043112. Epub 2012 May 3.

Vitamin D and skeletal muscle strength and endurance in COPD

Affiliations
Free article

Vitamin D and skeletal muscle strength and endurance in COPD

Abigail S Jackson et al. Eur Respir J. 2013 Feb.
Free article

Erratum in

  • Eur Respir J. 2013 Apr;41(4):998. Kemp, Samuel V [added]

Abstract

It is not known whether vitamin D levels make a significant contribution to muscle dysfunction in chronic obstructive pulmonary disease (COPD). In 104 COPD patients (mean±sd forced expiratory volume in 1 s 44±22 % predicted) and 100 age- and sex-matched controls, serum 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and parathyroid hormone (PTH) levels were measured and related to quadriceps strength and endurance. In a subset of 26 patients and 13 controls, quadriceps biopsy was performed and mRNA expression of myogenic regulatory factors (mrf) and fibre-specific myosin heavy chains (MHC) was determined. COPD patients were weaker and less physically active than controls. 25(OH)D levels were similar in both groups (48.5±25.5 nmol·L(-1) COPD versus 55.4±28.3 nmol·L(-1) control, p=0.07) but PTH levels were significantly higher in patients (5.2±2.3 pmol·mL(-1) versus 4.4±2.0 pmol·L(-1), p=0.01). 1,25(OH)D was significantly correlated with strength in controls, but not in COPD patients and not with quadriceps endurance assessed using repetitive magnetic stimulation in COPD (n=35) or control (n=35) subjects. In controls, but not COPD patients, muscle biopsy analysis showed a negative relationship between 25(OH)D and MHCIIa expression (r(2)=0.5, p=0.01) and a positive relationship between mrf4 and MHCIIa expression (r(2)=0.5, p=0.009), and myogenic regulatory factor myf5 and MHCI expression (r(2)=0.72, p=0.004). In contrast with healthy controls, muscle strength is not associated with vitamin D levels in COPD, which may represent vitamin D resistance.

PubMed Disclaimer

Publication types

LinkOut - more resources