Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;21(5-6):271-9.
doi: 10.3233/BME-2012-0675.

The effect of E-beam engineered surface structures on attachment, proliferation and differentiation of human mesenchymal stem cells

Affiliations

The effect of E-beam engineered surface structures on attachment, proliferation and differentiation of human mesenchymal stem cells

J Elizabeth Biemond et al. Biomed Mater Eng. 2011.

Abstract

Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. The effect of two newly designed highly porous E-beam engineered surface structures (cubic and star) on attachment, proliferation and differentiation of human mesenchymal stem cells (hMSCs) was investigated and compared to a solid sandblasted control. SEM analysis showed that the E-beam structures allowed cells to attach and spread. Proliferation on the new surface structures was comparable to the solid control. Furthermore, differentiation on the 3D structures was comparable to the control specimen. When culturing 300,000 cells for 10 days, the cubic structure showed a significantly higher differentiation rate compared to the sandblasted specimen. We conclude that the results for attachment, proliferation and differentiation of mesenchymal stem cells on the newly engineered 3-dimensional E-beam surface topographies are promising. In vivo experiments are necessary to assess the bone ingrowth potential of the new surface structures.

PubMed Disclaimer

Publication types

LinkOut - more resources