Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;114(1):80-5.
doi: 10.1016/j.jbiosc.2012.02.019. Epub 2012 May 5.

Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system

Affiliations

Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system

Yuki Soma et al. J Biosci Bioeng. 2012 Jul.

Abstract

Efficient bio-production from lignocellulosic biomass is required for the purpose of developing an inexpensive, practical bio-refinery process. As one approach to address this problem, we genetically engineered Escherichia coli to produce isopropanol directly from cellobiose via the cellobiose degradation by Beta-Glucosidase (BGL) on the cell surface. First, we investigated the cellobiose consumption of two E. coli strains with the BGL protein from Thermobifida fusca YX (Tfu0937) fused to the anchor protein Blc (Tfu0937/Blc) using different fusion sites. Next, we introduced the synthetic pathway for isopropanol production into those strains and compared their isopropanol production in the presence of glucose. Based on the results of these assays, TA212/pTA411, which was introduced Tfu-Blc fused protein expression system and the synthetic pathway for isopropanol production, was selected for the directly isopropanol production from cellobiose. TA212/pTA411 produced 69.0±11.6mM isopropanol at 21h of fermentation, whereas TA212/pTA147, which did not introduced the BGL/anchor fused protein but was introduced the synthetic pathway for isopropanol production, showed no cellobiose consumption and no isopropanol production during fermentation. To our knowledge, this is the first report of the production of a bio-product from cellobiose using E. coli.

PubMed Disclaimer

Publication types

LinkOut - more resources