Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;26(8):3321-35.
doi: 10.1096/fj.12-208751. Epub 2012 May 4.

The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism

Affiliations

The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism

Julien Delezie et al. FASEB J. 2012 Aug.

Abstract

Mutations of clock genes can lead to diabetes and obesity. REV-ERBα, a nuclear receptor involved in the circadian clockwork, has been shown to control lipid metabolism. To gain insight into the role of REV-ERBα in energy homeostasis in vivo, we explored daily metabolism of carbohydrates and lipids in chow-fed, unfed, or high-fat-fed Rev-erbα(-/-) mice and their wild-type littermates. Chow-fed Rev-erbα(-/-) mice displayed increased adiposity (2.5-fold) and mild hyperglycemia (∼10%) without insulin resistance. Indirect calorimetry indicates that chow-fed Rev-erbα(-/-) mice utilize more fatty acids during daytime. A 24-h nonfeeding period in Rev-erbα(-/-) animals favors further fatty acid mobilization at the expense of glycogen utilization and gluconeogenesis, without triggering hypoglycemia and hypothermia. High-fat feeding in Rev-erbα(-/-) mice amplified metabolic disturbances, including expression of lipogenic factors. Lipoprotein lipase (Lpl) gene, critical in lipid utilization/storage, is triggered in liver at night and constitutively up-regulated (∼2-fold) in muscle and adipose tissue of Rev-erbα(-/-) mice. We show that CLOCK, up-regulated (2-fold) at night in Rev-erbα(-/-) mice, can transactivate Lpl. Thus, overexpression of Lpl facilitates muscle fatty acid utilization and contributes to fat overload. This study demonstrates the importance of clock-driven Lpl expression in energy balance and highlights circadian disruption as a potential cause for the metabolic syndrome.

PubMed Disclaimer

Publication types

LinkOut - more resources