Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 5:3:33.
doi: 10.3389/fimmu.2012.00033. eCollection 2012.

The commensal microbiota drives immune homeostasis

Affiliations

The commensal microbiota drives immune homeostasis

Marie-Claire Arrieta et al. Front Immunol. .

Abstract

For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

Keywords: immune homeostasis; intestinal microbiota.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The microbiota helps to maintain immune homeostasis by stimulating different arms of the T cell response. (A) SFB is a potent inducer of Th17 cells, whereas pathogens like S. typhimurium induce an effector Th1 response. PSA from B. fragilis stimulates the differentiation of FoxP3+ T cells, which downregulate the pro-inflammatory Th1 and Th17 responses. (B) Different environmental and host-derived factors are known to cause dysbiosis. Imbalances in the intestinal microbiota can favor Th17 pro-inflammatory T cells over regulatory FoxP3+ T cells, inducing inflammatory response that can damage the intestinal epithelium. In a genetically predisposed host this can lead to chronic inflammatory disease, such as IBD or autoimmunity.

References

    1. Abrams G. D., Bauer H., Sprinz H. (1963). Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364 - PubMed
    1. Adlerberth I. (2008). Factors influencing the establishment of the intestinal microbiota in infancy. Nestle Nutr. Workshop Ser. Pediatr. Program. 62, 13–29; discussion 29–33.10.1159/000146245 - DOI - PubMed
    1. Agrawal A., Eastman Q. M., Schatz D. G. (1998). Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–75110.1038/29457 - DOI - PubMed
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T., Batto J. M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G., Wang J., Guarner F., Pedersen O., De Vos W. M., Brunak S., Dore J., Antolin M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., Van De Guchte M., Guedon E., Haimet F., Huber W., Van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., Merieux A., Melo Minardi R., M’Rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–18010.1038/nature09944 - DOI - PMC - PubMed
    1. Atarashi K., Nishimura J., Shima T., Umesaki Y., Yamamoto M., Onoue M., Yagita H., Ishii N., Evans R., Honda K., Takeda K. (2008). ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 808–81210.1038/nature07240 - DOI - PubMed

LinkOut - more resources