Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;12(3):206-44.
doi: 10.2174/156652312800840595.

Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy

Affiliations
Review

Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy

Rebecca J Fairclough et al. Curr Gene Ther. 2012 Jun.

Abstract

DMD is a devastatingly progressive muscle wasting disorder of childhood that significantly shortens life expectancy. Despite efforts to develop an effective therapy that dates back over a century, clinical interventions are still restricted to management of symptoms rather than a cure. The rationale to develop effective therapies changed in 1986 with the discovery of the dystrophin gene. Since then extensive research into both the molecular basis and pathophysiology of DMD has paved the way not only for development of strategies which aim to correct the primary defect, but also towards the identification of countless therapeutic targets with the potential to alleviate the downstream pathology. In addition to gene and cell-based therapies, which aim to deliver the missing gene and/or protein, an exciting spectrum of pharmacological approaches aimed at modulating therapeutic targets within DMD muscle cells through the use of small drugs are also being developed. This review presents promising pharmacological approaches aimed at targeting the primary defect, including suppression of nonsense mutations and functional compensation by upregulation of the dystrophin homologue, utrophin. Downstream of the primary membrane fragility, inflammation and fibrosis are reduced by blocking NF-κB, TGF-α and TGF-β, and free radical damage has been targeted using antioxidants and dietary/nutritional supplements. There are new hopes that ACE and PDE5 inhibitors can protect against skeletal as well as cardiac pathology, and modulating Ca2+ influx, NO, BMP, protein degradation and the mitochondrial permeability pore hold further promise in tackling the complex pathogenesis of this multifaceted disorder.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources