Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 15;378(1):135-43.
doi: 10.1016/j.jcis.2012.04.033. Epub 2012 Apr 23.

Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface

Affiliations

Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface

Pablo Ramírez et al. J Colloid Interface Sci. .

Abstract

The conformation and the dilatational properties of three non-ionic triblock PEO-PPO-PEO (where PEO is polyethyleneoxide and PPO is polypropyleneoxide) copolymers of different hydrophobicity and molecular weight were investigated at the water-hexane interface. The interfacial behavior of the copolymers was studied by combining dilatational rheology using the oscillating drop method and ellipsometry. From the dilatational rheology measurements the limiting elasticity values, E(0), of the Pluronics as function of surface pressure, Π, and adsorption time were obtained, i.e. E(0)(t) and E(0)(Π). Here, it is shown that E(0)(t) depends on the number of PEO units and on the bulk concentration, showing maximum and minimum surface elasticity values which indicate conformational changes in the interfacial layer. Furthermore, in the framework of the polymer scaling law theory, conformational transitions were discussed in E(0) vs. Π plots. In a dilute regime (Π<14 mN m(-1)) at the water-hexane interface, E(0)=2Π fits well all the data, which indicates a two-dimensional "stretched chain" conformation. Increasing Π, two other interfacial transitions could take place. The different behavior of Pluronic copolymers could be also described by the local minima of E(0), which depends on the hydrophobicity of the copolymers. Conformational transitions observed by interfacial rheology were compared to ellipsometric data. Experimental results were discussed and explained on the basis of two- and three-dimensional copolymer structure taking into account that PPO chains could be partially immersed in hexane and water.

PubMed Disclaimer

LinkOut - more resources