Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012:41:321-42.
doi: 10.1146/annurev-biophys-050511-102250.

Extending microscopic resolution with single-molecule imaging and active control

Affiliations
Review

Extending microscopic resolution with single-molecule imaging and active control

Michael A Thompson et al. Annu Rev Biophys. 2012.

Abstract

Superresolution imaging of biological structures provides information beyond the optical diffraction limit. One class of superresolution techniques uses the power of single fluorescent molecules as nanoscale emitters of light combined with emission control, variously described by the acronyms PALM/FPALM/STORM and many others. Even though the acronyms differ and refer mainly to different active-control mechanisms, the underlying fundamental principles behind these "pointillist" superresolution imaging techniques are the same. Circumventing the diffraction limit requires two key steps. The first step (superlocalization) is the detection and localization of spatially separated single molecules. The second step actively controls the emitting molecules to ensure a very low concentration of single emitters such that they do not overlap in any one imaging frame. The final image is reconstructed from time-sequential imaging and superlocalization of the single emitting labels decorating the structure of interest. The statistical, imaging, and active-control strategies for achieving superresolution imaging with single molecules are reviewed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources