Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2012 May 13;44(6):659-69.
doi: 10.1038/ng.2274.

A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

Alisa K Manning  1 Marie-France HivertRobert A ScottJonna L GrimsbyNabila Bouatia-NajiHan ChenDenis RybinChing-Ti LiuLawrence F BielakInga ProkopenkoNajaf AminDaniel BarnesGemma CadbyJouke-Jan HottengaErik IngelssonAnne U JacksonToby JohnsonStavroula KanoniClaes LadenvallVasiliki LagouJari LahtiCecile LecoeurYongmei LiuMaria Teresa Martinez-LarradMay E MontasserPau NavarroJohn R B PerryLaura J Rasmussen-TorvikPerttu SaloNaveed SattarDmitry ShunginRona J StrawbridgeToshiko TanakaCornelia M van DuijnPing AnMariza de AndradeJeanette S AndrewsThor AspelundMustafa AtalayYurii AulchenkoBeverley BalkauStefania BandinelliJacques S BeckmannJohn P BeilbyClaire BellisRichard N BergmanJohn BlangeroMladen BobanMichael BoehnkeEric BoerwinkleLori L BonnycastleDorret I BoomsmaIngrid B BoreckiYvonne BöttcherClaude BouchardEric BrunnerDanijela BudimirHarry CampbellOlga CarlsonPeter S ChinesRobert ClarkeFrancis S CollinsArturo Corbatón-AnchueloDavid CouperUlf de FaireGeorge V DedoussisPanos DeloukasMaria DimitriouJosephine M EganGudny EiriksdottirMichael R ErdosJohan G ErikssonElodie EuryLuigi FerrucciIan FordNita G ForouhiCaroline S FoxMaria Grazia FranzosiPaul W FranksTimothy M FraylingPhilippe FroguelPilar GalanEco de GeusBruna GiganteNicole L GlazerAnuj GoelLeif GroopVilmundur GudnasonGöran HallmansAnders HamstenOla HanssonTamara B HarrisCaroline HaywardSimon HeathSerge HercbergAndrew A HicksAroon HingoraniAlbert HofmanJennie HuiJoseph HungMarjo-Riitta JarvelinMin A JhunPaul C D JohnsonJ Wouter JukemaAntti JulaW H KaoJaakko KaprioSharon L R KardiaSirkka Keinanen-KiukaanniemiMika KivimakiIvana KolcicPeter KovacsMeena KumariJohanna KuusistoKirsten Ohm KyvikMarkku LaaksoTimo LakkaLars LannfeltG Mark LathropLenore J LaunerKarin LeanderGuo LiLars LindJaana LindstromStéphane LobbensRuth J F LoosJian'an LuanValeriya LyssenkoReedik MägiPatrik K E MagnussonMichael MarmotPierre MenetonKaren L MohlkeVincent MooserMario A MorkenIva MiljkovicNarisu NarisuJeff O'ConnellKen K OngBen A OostraLyle J PalmerAarno PalotieJames S PankowJohn F PedenNancy L PedersenMarina PehlicLeena PeltonenBrenda PenninxMarijana PericicMarkus PerolaLouis PerussePatricia A PeyserOzren PolasekPeter P PramstallerMichael A ProvinceKatri RäikkönenRainer RauramaaEmil RehnbergKen RiceJerome I RotterIgor RudanAimo RuokonenTimo SaaristoMaria Sabater-LlealVeikko SalomaaDavid B SavageRicha SaxenaPeter SchwarzUdo SeedorfBengt SennbladManuel Serrano-RiosAlan R ShuldinerEric J G SijbrandsDavid S SiscovickJohannes H SmitKerrin S SmallNicholas L SmithAlbert Vernon SmithAlena StančákováKathleen StirrupsMichael StumvollYan V SunAmy J SwiftAnke TönjesJaakko TuomilehtoStella TrompetAndre G UitterlindenMatti UusitupaMax VikströmVeronique VitartMarie-Claude VohlBenjamin F VoightPeter VollenweiderGerard WaeberDawn M WaterworthHugh WatkinsEleanor WheelerElisabeth WidenSarah H WildSara M WillemsGonneke WillemsenJames F WilsonJacqueline C M WittemanAlan F WrightHanieh YaghootkarDiana ZelenikaTatijana ZemunikLina ZgagaDIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumMultiple Tissue Human Expression Resource (MUTHER) ConsortiumNicholas J WarehamMark I McCarthyInes BarrosoRichard M WatanabeJose C FlorezJosée DupuisJames B MeigsClaudia Langenberg
Collaborators, Affiliations
Meta-Analysis

A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

Alisa K Manning et al. Nat Genet. .

Abstract

Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Genome-wide plots of the discovery joint meta-analysis (JMA) for fasting insulin (1a top) and fasting glucose (1b top): 17 loci with known associations were observed (red) and 50 loci were taken to the follow-up analysis (light and dark blue). Of these, 12 reached genome-wide significance in the combined discovery and follow-up JMA (dark blue). The P values of these 12 loci from the models fit in the combined discovery and follow-up analyses are presented in Figure 1a (bottom) for fasting insulin and 1b (bottom) for fasting glucose: JMA (red), main effects adjusting for BMI (orange), interaction with continuous BMI (green) and interaction with dichotomous BMI (blue). * G6PC2 JMA P value: 1.7 × 10−113, ** GCK JMA P value: 8.3 ×10−56, *** MTNR1B JMA P value: 4.38 × 10−105.
Figure 2
Figure 2
Regional plot of the COBLL1-GRB14 genomic locus. The left plot shows the discovery JMA P values in the background and for the SNP taken forward to the follow-up analyses (rs7607980), the P values of the discovery JMA (dark red) and the combined discovery and follow-up JMA (light red), main effects adjusting for BMI (orange), interaction with continuous BMI (green) and interaction with dichotomous BMI (blue). The right plot shows the beta estimates with 95% confidence interval of the increasing allele in the two BMI strata: BMI<28 and BMI≥28 kg/m2. Effect = Beta estimates from regression models of ln(FI) adjusting for age, sex and other study-specific covariates.

References

    1. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77. - PMC - PubMed
    1. Sladek R, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–885. - PubMed
    1. Dupuis J, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics. 2010;42:105–116. - PMC - PubMed
    1. Voight BF, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89. - PMC - PubMed
    1. Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol. 2009;5:682–93. - PubMed

Publication types

Grants and funding