Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 6;60(22):5597-603.
doi: 10.1021/jf300976y. Epub 2012 May 22.

Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight

Affiliations

Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight

Sang Min Kim et al. J Agric Food Chem. .

Abstract

Ligularia fischeri (Ledeb.) Turcz, a commercial leafy vegetable, contains caffeoylquinic acid derivatives (CQAs) as major phenolic constituents. The HPLC chromatograms of leaf extracts collected from different areas in Korea showed a significant variation in CQA amount, and two tri-O-caffeoylquinic acids (triCQAs) were purified and structurally identified by NMR and MS from this plant. Radical scavenging activities among CQAs were found to be increased in proportion to the number of caffeoyl groups. Since this plant prefers damp and shady growth conditions, the effects of sunlight were investigated by growing plantlets in sunlight and shade for four weeks. Greater leaf thickness and higher phenolic contents were found for leaves grown in sunlight than in shade. Four major CQAs-5-mono-O-caffeoylquinic acid (5-monoCQA), and 3,4-, 3,5-, and 4,5-di-O-caffeoylquinic acid (diCQA)-were induced by solar irradiation, whereas the content of these compounds decreased steadily in shade leaves. The leaves of L. fischeri clearly showed adaptation responses to sunlight, and these characteristics can be exploited for cultivation of this plant for potential use as a nutraceutical and functional food.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources