Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May 15:9:16.
doi: 10.1186/1742-4682-9-16.

Bariatric surgery and T2DM improvement mechanisms: a mathematical model

Affiliations

Bariatric surgery and T2DM improvement mechanisms: a mathematical model

Puntip Toghaw et al. Theor Biol Med Model. .

Abstract

Background: Consensus exists that several bariatric surgery procedures produce a rapid improvement of glucose homeostasis in obese diabetic patients, improvement apparently uncorrelated with the degree of eventual weight loss after surgery. Several hypotheses have been suggested to account for these results: among these, the anti-incretin, the ghrelin and the lower-intestinal dumping hypotheses have been discussed in the literature. Since no clear-cut experimental results are so far available to confirm or disprove any of these hypotheses, in the present work a mathematical model of the glucose-insulin-incretin system has been built, capable of expressing these three postulated mechanisms. The model has been populated with critically evaluated parameter values from the literature, and simulations under the three scenarios have been compared.

Results: The modeling results seem to indicate that the suppression of ghrelin release is unlikely to determine major changes in short-term glucose control. The possible existence of an anti-incretin hormone would be supported if an experimental increase of GIP concentrations were evident post-surgery. Given that, on the contrary, collected evidence suggests that GIP concentrations decrease post-surgery, the lower-intestinal dumping hypothesis would seem to describe the mechanism most likely to produce the observed normalization of Type 2 Diabetes Mellitus (T2DM) after bariatric surgery.

Conclusions: The proposed model can help discriminate among competing hypotheses in a context where definitive data are not available and mechanisms are still not clear.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Model block diagram. State variables are represented with circles, solid arrows represent mass transfers, while dashed arrows indicate stimulations. The model is here schematically represented: the path of ingested glucose (Mi) from the stomach (S) through duodenum (D) and ileum (L), and absorption in the plasmatic compartment (G) is along the central set of compartments (bottom-down). The insulin compartment (I) is on the bottom right of the figure, while the incretins (W and U) and DPP4 (P) are represented in between glucose compartments and insulin. Finally, on the left side, anti-incretin (A) and ghrelin (H) are represented. All the compartments are linked with dashed arrows, indicating stimulation of the entry rates or of the elimination rates, showing the relationship between state variables.
Figure 2
Figure 2
Model simulation. Thick gray line: pre-surgery case; solid line: lower-intestinal hypothesis (LIH); dash-dot line: anti-incretin hypothesis (AIH); dashed line: ghrelin hypothesis (GH). 2.1 Stomach glucose content is unchanged in all the hypotheses. 2.2 Glucose content in the duodenum is zero in the LIH, while is unchanged in the other scenarios. 2.3 Ileum glucose content is higher and the peak is earlier, compared to the pre-surgery scenario, for the LIH. In the other hypotheses the dynamics is the same. 2.4 Plasma glucose concentration is lower in the AIH and the LIH (more markedly in the latter). The curve in the GH is unchanged compared to the pre-surgery case. 2.5 Plasma insulin concentration is higher in the AIH and the LIH (more markedly in the latter). GH is unchanged compared to the pre-surgery case. 2.6 GLP-1 concentration is markedly higher in the LIH, while is slightly higher in the AIH and unchanged in the GH. 2.7 GIP concentration increases in the AIH, decreases in the LIH, is unchanged in the GH. 2.8 Anti-incretin concentration is constant at the basal value in the LIH, zero in the AIH, unchanged in the GH 2.9 Ghrelin concentration dynamics is slightly lower in the LIH and the AIH, while for the GH ghrelin concentration is zero.

Similar articles

Cited by

References

    1. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006;26:968–976. doi: 10.1161/01.ATV.0000216787.85457.f3. - DOI - PubMed
    1. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–591. doi: 10.1038/nrc1408. - DOI - PubMed
    1. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–887. doi: 10.1038/nature05488. - DOI - PubMed
    1. Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology. 2007;132:2253–2271. doi: 10.1053/j.gastro.2007.03.057. - DOI - PubMed
    1. Bose M, Olivan B, Teixeira J, Pi-Sunyer FX, Laferrere B. Do Incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: What are the evidence? Obes Surg. 2009;19:217–229. doi: 10.1007/s11695-008-9696-3. - DOI - PMC - PubMed

Publication types

MeSH terms