The interplay of mitochondria with calcium: an historical appraisal
- PMID: 22591641
- DOI: 10.1016/j.ceca.2012.02.007
The interplay of mitochondria with calcium: an historical appraisal
Abstract
Indirect findings in the 1950s had indicated that mitochondria could accumulate Ca(2+), but only in 1961 isolated mitochondria were directly shown to take it up in a process driven by the activity of the respiratory chain or by the hydrolysis of added ATP. The uptake of Ca(2+) could be accompanied by the simultaneous uptake of inorganic phosphate, leading to the precipitation of hydroxyapatite in the matrix and to the effective buffering of the free Ca(2+) concentration in it. The uptake of Ca(2+) occurred via an electrophoretic uniporter that has been molecularly identified only recently. Ca(2+) was then released through a Na(+)/Ca(2+) exchanger that has also been identified very recently (a H(+)/Ca(2+) antiporter has also been described in some mitochondrial types). In the matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated by Ca(2+), providing a rationale for the Ca(2+) cycling process. The affinity of the uptake uniporter was found to be too low to efficiently regulate Ca(2+) in the low to mid nM concentration in the cytosol. However, a number of findings showed that energy linked transport of Ca(2+) did nevertheless occur in mitochondria in situ. The enigma was solved in the 1990s, when it was found that perimitochondrial Ca(2+) pools are created by the discharge of Ca(2+) from vicinal endoplasmic reticulum stores in which the concentration of Ca(2+) is high enough to satisfy the poor affinity of the uniporter. Thus, mitochondria have now regained a key role in the regulation of cytosolic Ca(2+) (not only of their own internal Ca(2+)).
Copyright © 2012. Published by Elsevier India Pvt Ltd.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
