Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 25;18(26):8092-9.
doi: 10.1002/chem.201200068. Epub 2012 May 16.

Synthesis, structure, properties, and application of a carbazole-based diaza[7]helicene in a deep-blue-emitting OLED

Affiliations

Synthesis, structure, properties, and application of a carbazole-based diaza[7]helicene in a deep-blue-emitting OLED

Longqiang Shi et al. Chemistry. .

Abstract

A carbazole-based diaza[7]helicene, 2,12-dihexyl-2,12-diaza[7]helicene (1), was synthesized by a photochemical synthesis and its use as a deep-blue dopant emitter in an organic light-emitting diode (OLED) was examined. Compound 1 exhibited good solubility and excellent thermal stability with a high decomposition temperature (T(d)=372.1 °C) and a high glass-transition temperature (T(g), up to 203.0 °C). Single-crystal structural analysis of the crystalline clathrate (1)(2)⋅cyclohexane along with a theoretical investigation revealed a non-planar-fused structure of compound 1, which prevented the close-packing of molecules in the solid state and kept the molecule in a good amorphous state, which allowed the optimization of the properties of the OLED. A device with a structure of ITO/NPB (50 nm)/CBP:5 % 1 (30 nm)/BCP (20 nm)/Mg:Ag (100 nm)/Ag (50 nm) showed saturated blue light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15, 0.10); the maximum luminance efficiency and brightness were 0.22 cd A(-1) (0.09 Lm W(-1)) and 2365 cd m(-2), respectively. This new class of helicenes, based on carbazole frameworks, not only opens new possibilities for utilizing helicene derivatives in deep-blue-emitting OLEDs but may also have potential applications in many other fields, such as molecular recognition and organic nonlinear optical materials.

PubMed Disclaimer

LinkOut - more resources