Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;15(9):902-7.
doi: 10.1097/00007632-199009000-00012.

Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires

Affiliations

Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires

J D Coe et al. Spine (Phila Pa 1976). 1990 Sep.

Abstract

Posteriorly directed load to failure testing of four different types of spinal implants was performed in individual T5 to S1 vertebra harvested from seven fresh-frozen human cadaveric spines. The implants tested were: 1) Drummond spinous process wires, 2) Harrington laminar hooks, 3) Cotrel-Dubousset transpedicular screws, and 4) Steffee VSP transpedicular screws. The ultimate failure of each implant was compared with the bone mineral density of each vertebra to determine which implants, if any, were particularly advantageous in osteoporotic vertebrae. Before biomechanical testing, the spines were analyzed in vitro by dual photon absorptiometry to determine the bone mineral densities (gm/cm2) of each vertebra. The mean tensile loads to failure for each of the implants tested were as follows: Cotrel-Dubousset transpedicular screws: 345 Newtons; spinous process wire/button: 382 Newtons; Steffee transpedicular screws: 430 Newtons; and laminar hooks: 646 Newtons. The difference between the loads to failure for laminar hooks and the other implants was significant (P less than 0.05) using one-way analysis of variance. The overall correlation coefficient for bone mineral density with ultimate load to failure was 0.30 (P less than 0.001). The correlation coefficients were 0.47 (P less than 0.001) for spinous process wires alone; 0.096 (not significant) for laminar hooks alone; 0.37 (P less than 0.001) for Cotrel-Dubousset pedicle screws; and 0.48 (P less than 0.001) for Steffee pedicle screws. Of the four different implants tested, laminar hooks were most resistant to failure from posteriorly directed forces.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources