Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec;259(6 Pt 1):G991-7.
doi: 10.1152/ajpgi.1990.259.6.G991.

Cytoskeleton of intestinal goblet cells: role of actin filaments in baseline secretion

Affiliations

Cytoskeleton of intestinal goblet cells: role of actin filaments in baseline secretion

M G Oliver et al. Am J Physiol. 1990 Dec.

Abstract

Although microtubules appear necessary to maintain mucin granule transport in intestinal goblet cells, the role of microfilaments in mucus secretion is unknown. To determine the functional significance of microfilaments in goblet cell secretion, fluorescent cytochemistry of microfilaments and autoradiographic studies on granule movement were performed on rabbit intestinal goblet cells, with and without the actin depolymerizing agents, cytochalasin D (cyto D), and dihydro-cytochalasin B (dihydro B). In normal goblet cells, cytochemical localization of F-actin with NBD-phallacidin demonstrated their restriction to the apical surface of the goblet cell. Visualization of the goblet cell apical surface by electron microscopy revealed the presence of a thin layer of cytoplasm overlying the granule mass. Treatment with cyto D and dihydro B eliminated NBD-phallacidin staining of the apical cell surface. Quantitative analysis of baseline granule translocation demonstrated that treatment with cyto D and dihydro B resulted in dramatic acceleration of granule movement through goblet cells. This cellular response results from an increase in baseline secretion and facilitation of secretion of newly synthesized mucins, not stimulation of an accelerated secretory event. These data imply that actin filaments fulfill a barrier function in baseline secretion by hindering granule access to the plasma membrane; once the granule contacts the plasma membrane, exocytosis occurs. Secretion is balanced by the translocation of subjacent granules. In contrast, an accelerated secretory event is not triggered by plasma membrane access alone; this event requires a regulatory signal. We hypothesize that, unlike accelerated secretion, baseline secretion is constitutive, with exocytosis limited solely by the physical constraint of secretory granule access to the apical plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources