Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May 18:12:362.
doi: 10.1186/1471-2458-12-362.

Integrated mosquito larval source management reduces larval numbers in two highland villages in western Kenya

Affiliations

Integrated mosquito larval source management reduces larval numbers in two highland villages in western Kenya

Susan S Imbahale et al. BMC Public Health. .

Abstract

Background: In western Kenya, malaria remains one of the major health problems and its control remains an important public health measure. Malaria control is by either use of drugs to treat patients infected with malaria parasites or by controlling the vectors. Vector control may target the free living adult or aquatic (larval) stages of mosquito. The most commonly applied control strategies target indoor resting mosquitoes. However, because mosquitoes spend a considerable time in water, targeting the aquatic stages can complement well with existing adult control measures.

Methods: Larval source management (LSM) of malaria vectors was examined in two villages i.e. Fort Ternan and Lunyerere, with the aim of testing strategies that can easily be accessed by the affected communities. Intervention strategies applied include environmental management through source reduction (drainage of canals, land levelling or by filling ditches with soil), habitat manipulation (by provision of shading from arrow root plant), application of Bacillus thuringiensis var israelensis (Bti) and the use of predatory fish, Gambusia affinis. The abundance of immature stages of Anopheles and Culex within intervention habitats was compared to that within non-intervention habitats.

Results: The findings show that in Fort Ternan no significant differences were observed in the abundance of Anopheles early and late instars between intervention and non-intervention habitats. In Lunyerere, the abundance of Anopheles early instars was fifty five times more likely to be present within non-intervention habitats than in habitats under drainage. No differences in early instars abundance were observed between non-intervention and habitats applied with Bti. However, late instars had 89 % and 91 % chance of being sampled from non-intervention rather than habitats under drainage and those applied with Bti respectively.

Conclusion: Most of these interventions were applied in habitats that arose due to human activities. Involvement of community members in control programs would be beneficial in the long term once they understand the role they play in malaria transmission. Apart from the need for communities to be educated on their role in malaria transmission, there is a need to develop and test strategies that can easily be accessed and hence be used by the affected communities. The proposed LSM strategies target outdoor immature mosquitoes and hence can complement well with control measures that target indoor resting vectors. Therefore inclusion of LSM in Integrated Vector Management (IVM) program would be beneficial.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Early (a) and late (b) instars monthly abundance of anopheline larvae in permanent habitats subjected to larval source management strategies in Fort Ternan from May 2008 to July 2009. The black arrow indicates the start (August) and the grey the end (March) of larval source management measures.
Figure 2
Figure 2
Early (a) and late (b) instars monthly abundance of anopheline in permanent habitats subjected to LSM strategies in Lunyerere from Jan 2008 to July 2009. The black arrow indicates the start (April) and the grey the end (March) of larval source management measures.

References

    1. Okech BA, Gouagna LC, Walczak E, Kabiru EW, Beier JC, Yan G. et al.The development of Plasmodium falciparum in experimentally infected Anopheles gambiae (Diptera: Culicidae) under ambient microhabitat temperature in western Kenya. Acta Trop. 2004;92:99–108. doi: 10.1016/j.actatropica.2004.06.003. - DOI - PubMed
    1. Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G. Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg. 1999;61:1010–1016. - PubMed
    1. Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of Larval Anopheline (Diptera: Cilicidae) Habitats in Western Kenya. J Med Entomol. 2001;38:282–288. doi: 10.1603/0022-2585-38.2.282. - DOI - PubMed
    1. Awolola TS, Oduola AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44:241–244. - PubMed
    1. Castro MC, Kanamori S, Kannady K, Mkude S, Killeen GF, Fillinger U. The Importance of Drains for the Larval Development of Lymphatic Filariasis and Malaria Vectors in Dar es Salaam, United Republic of Tanzania. PLoS Neglect Trop Dis. 2010;4:e693. doi: 10.1371/journal.pntd.0000693. - DOI - PMC - PubMed

Publication types