Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Aug 30;574(2):226-39.
doi: 10.1016/0005-2760(79)90004-3.

Pulmonary phosphatidic acid phosphatase. A comparative study of the aqueously dispersed phosphatidate-dependent and membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung

Comparative Study

Pulmonary phosphatidic acid phosphatase. A comparative study of the aqueously dispersed phosphatidate-dependent and membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung

A Yeung et al. Biochim Biophys Acta. .

Abstract

1. The properties of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase (EC 3.1.3.4) activities of rat lung have been studied in microsomal and cytosol preparations and compared with the properties of the membrane-bound phosphatidate-dependent activities. 2. The microsomal phosphatidic acid phosphatase displayed a prominent pH optimum at 6.5 with a minor peak which varied between 7.5--8 in different experiments. With the cytosol, the major activity was at the higher pH (7.5--8.0) but a distinct optimum was also observed at pH 6.0--6.5. With the membrane-bound substrate, a single broad optimum was observed between pH 7.4 and 8.0 with the cytosol and 6.5--7.5 with the microsomal fraction. 3. Subcellular fractionation studies revealed that the microsomal fraction possessed the greatest proportion of the total phosphatidic acid phosphatase activity and the highest relative specific activity. However, studies with marker enzymes indicated that the aqueously dispersed phosphatidate-dependent activity could be present in plasma membrane, lysosomes and osmiophilic lamellar bodies as well as in the endoplasmic reticulum. 4. The aqueously dispersed phosphatidic acid-dependent activities present in the microsomal and supernatant fractions were inhibited by Ca2+, Mn2+, F- and by high concentrations of Mg2+. In contrast to the membrane-bound phosphatidate-dependent activities, there was little Mg2+ stimulation and only a very slight inhibitory effect was noted with EDTA. A small EDTA-dependent Mg2+ stimulation could be observed with the microsomal fraction but only at the lower pH optimum (6.5). 5. The presence of a number of phosphate esters tended to stimulate rather than inhibit the microsomal activity, indicating that the hydrolase is relatively specific for lipid substrates. Marked inhibitions were noted with lysophosphatidic acid and phosphatidylglycerol phosphate. Phosphatidylcholine produced a slight inhibition. 6. The results indicate that the bulk of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung microsomes and cytosol is not related to the activities observed with membrane-bound phosphatidate. The Mg2+-dependent hydrolase activities may be synonymous. However, unequivocal conclusions will only be possible when the polypeptide or polypeptides responsible for these activities can be purified.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources