Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;28(3):316-20.
doi: 10.1007/s12264-012-1222-x.

Hypoxic preconditioning in an autohypoxic animal model

Affiliations
Review

Hypoxic preconditioning in an autohypoxic animal model

Guo Shao et al. Neurosci Bull. 2012 Jun.

Abstract

Hypoxic preconditioning refers to the exposure of organisms, systems, organs, tissues or cells to moderate hypoxia/ischemia that results in increased resistance to a subsequent episode of severe hypoxia/ischemia. In this article, we review recent research based on a mouse model of repeated exposure to autohypoxia. Pre-exposure markedly increases the tolerance to or protection against hypoxic insult, and preserves the cellular structure of the brain. Furthermore, the hippocampal activity amplitude and frequency of electroencephalogram, latency of cortical somatosensory-evoked potential and spinal somatosensory-evoked potential progressively decrease, while spatial learning and memory improve. In the brain, detrimental neurochemicals such as free radicals are down-regulated, while beneficial ones such as adenosine are up-regulated. Also, antihypoxia factor(s) and gene(s) are activated. We propose that the tolerance and protective effects depend on energy conservation and plasticity triggered by exposure to hypoxia via oxygen-sensing transduction pathways and hypoxia-inducible factor-initiated cascades. A potential path for further research is the development of devices and pharmaceuticals acting on antihypoxia factor(s) and gene(s) for the prevention and treatment of hypoxia and related syndromes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lu G.W. Tissue-cell adaptation to hypoxia. Adv Pathophysiol. 1963;1:197–239.
    1. Janoff A. Alterations in lysosomes (intracellular enzymes) during shock; effects of preconditioning (tolerance) and protective drugs. Int Anesthesiol Clin. 1964;2:251–269. doi: 10.1097/00004311-196402000-00008. - DOI - PubMed
    1. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.CIR.74.5.1124. - DOI - PubMed
    1. Schurr A., Reid K.H., Tseng M.T., West C., Rigor B.M. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–248. doi: 10.1016/0006-8993(86)90418-X. - DOI - PubMed
    1. Tang Y.L., Zhu W., Cheng M., Chen L., Zhang J., Sun T., et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104:1209–1216. doi: 10.1161/CIRCRESAHA.109.197723. - DOI - PMC - PubMed

Publication types

LinkOut - more resources